\qquad

Notes Combinations \& Compositions of Functions

Goal \#1: Students will be able to find the domain of combinations AND compositions of functions.
Goal \#2: Students will be able to decompose a function into two functions (neither of which is the identity function).
Goal \#3: Students will be able identify implicitly defined functions within relations.
\otimes When dealing with SIMPLE combinations of functions (such as $f+g, f-g, f \bullet g$, and, $f \div g$) the domain of the function consists of all numbers that belong to BOTH the domain of f and the domain of g.

Ex1) Given that $f(x)=\sqrt{2-x} \& g(x)=\sqrt{2 x+5}$ determine the value of $f+g, f-g, f \bullet g$, and, $f \div g$ and their domains
$(f+g)(x)=$

$$
(f \bullet g)(x)=
$$

$(f-g)(x)=$

$$
(f \div g)(x)=
$$

Now you try ©
Perform the indicated operation, simplify your result as much as possible, then determine the domain of the resulting function.
a) If $f(x)=\frac{3}{x^{2}-3}$ and $g(x)=\frac{-x^{2}}{x^{2}-3}$, find $(f+g)(x)$
b) If $f(x)=\sqrt{x-10}$ and $g(x)=\sqrt{x+10}$, find $(f g)(x)$
c) If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{x+3}$, find $(f g)(x)$
d) If $f(x)=\sqrt{x-5}$ and $g(x)=\sqrt{x+2}$, find $(f / g)(x)$
\otimes When dealing with COMPOSITIONS functions (such as $f \mathrm{og}$) the domain of the function consists of all x -values in the domain of g that map to $g(x)$ values in the domain of f.

Ex2.a) Given $f(x)=\sqrt{x-1}$ and $g(x)=x^{2}+1$ Find the composition function and its domain.
a) $f(g(x))=$
b) $g(f(x))=$

Ex2.b) Given $f(x)=9-x^{2}$ and $g(x)=\sqrt{x}$ Find the composition function and its domain.
a) $f(g(x))=$
b) $g(f(x))=$

Now you try ©
2.c) Given $f(x)=x^{2}-1$ and $g(x)=\sqrt{x}$ Find the composition function and its domain.
2.d) Given $f(x)=\frac{1}{x+3}$ and $g(x)=x^{2}-3$ Find the
a) $f(g(x))=$
composition function and its domain.
a) $f(g(x))=$
b) $g(f(x))=$
b) $g(f(x))=$
\otimes When DECOMPOSING functions the purpose is to create two functions (not using the identity function) such that their composition IS the given function. So, when given $h(x)$ the goal is to DEFINE $\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{\&} \boldsymbol{g}(\boldsymbol{x})$ so that $h(x)=f(g(x))$

Ex3) For each of the following $h(x)$, find the functions f and g such that $h(x)=f(g(x))$.
a) $h(x)=(x+1)^{2}-3(x+1)+4$
b) $h(x)=\sqrt{x^{3}+1}$
c) $h(x)=9 x^{2}+6 x-2$

Now You Try ©
d) $h(x)=\sqrt[3]{2 x+1}$
e) $h(x)=\frac{x+2}{(x+2)^{2}+1}$
f) $h(x)=\frac{x+5}{x^{2}+10 x+25}$
g) $h(x)=\sqrt{\frac{1}{x}}$
\otimes When dealing with a RELATION that is NOT a FUNCTION it is often possible to solve for y , then identifying the functions which are IMPLICITLY defined by the original relation.

Ex4) Graph of each of the relations below by determining the functions which are implicitly defined within them.
a) $x^{2}+2 x y+y^{2}=1$
b) $x=y^{2}$
c) $-7 x^{2}+14 x y+63=7 y^{2}$

Now You Try ©
d) $9 x^{2}-12 x y+4 y^{2}=16$
e) $3 x^{2}+75 y^{2}=27-30 x y$

