Name: \_\_\_\_\_

## Notes: Inverses

| Goal #1: Students will be ab<br>Goal #2: Students will be ab                                                                                                                                                                                                                                          |                                                                                                                         |                                                                                                   |                                                                           |                                            | relations v        | vith inverses that are functions. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|--------------------|-----------------------------------|
| Inverse Functions & Relations                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                   |                                                                           |                                            |                    |                                   |
| <ul> <li>The most important thing to</li> <li>The inverse of f (x) is denote</li> <li>If f (x) &amp; g (x) are inverses of</li> <li>A relation is itself a function</li> <li>A relation has an inverse that</li> <li>A function has an inverse futor</li> <li>The graphical relationship b</li> </ul> | $d f^{-1}(x)$<br>f one another the<br>i fi t passes the<br>t is a function if<br>nction if it is a c<br>etween inverses | en the domain of<br>Vertical Line T<br>f it passes the Ho<br>one-to-one funct<br>is that they are | of one is the<br>est (VLT)<br>orizontal Li<br>ion (meaning<br>reflections | range of th<br>ne Test (HL<br>ng it passes | LT)<br>both the HL | T & VLT)                          |
| (a) Which of the relations to the right are functions?                                                                                                                                                                                                                                                |                                                                                                                         |                                                                                                   |                                                                           | В                                          |                    | C                                 |
| ( <b>b</b> ) Which of the relations to the right have an inverse function?                                                                                                                                                                                                                            |                                                                                                                         | D                                                                                                 |                                                                           | E                                          |                    | F                                 |
| (c) Which of the relations are on-to-one functions?                                                                                                                                                                                                                                                   |                                                                                                                         | <                                                                                                 |                                                                           |                                            |                    |                                   |
| <b>EXAMPLE 2 Calculating</b> Given the function $f(x)$ calc                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                   | e domain                                                                  | and range                                  | e of each:         |                                   |
| (a) $f(x) = 3\sqrt{x} - 5$                                                                                                                                                                                                                                                                            | $f^{-1}(x) = \_$                                                                                                        |                                                                                                   | (b)                                                                       | $f(x) = \frac{x}{x}$                       | -4                 | $f^{-1}(x) =$                     |
| Domain of <i>f</i> ( <i>x</i> ):                                                                                                                                                                                                                                                                      | $f^{-1}(x) =$<br>Domain of $f^{-1}(x)$ :                                                                                |                                                                                                   |                                                                           | nain of $f($                               | (x):               | Domain of $f^{-1}(x)$ :           |
| Range of <i>f</i> ( <i>x</i> ):                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                                   |                                                                           |                                            |                    |                                   |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                         | Now Y                                                                                             | ou Try C                                                                  | )                                          |                    |                                   |
| (c) $f(x) = -(x + 1)^3 - 5$<br>Domain of $f(x)$ :<br>Range of $f(x)$ :                                                                                                                                                                                                                                | Domain of                                                                                                               | $f^{-1}(x):$                                                                                      | Dor                                                                       | nain of $f$ (                              | <i>x</i> ):        | Domain of $f^{-1}(x)$ :           |

## **EXAMPLE 3** Sketching an Inverse Relation From a Graph

Given the function f(x) below sketch  $f^{-1}(x)$  and identify the domain and range of both. (a) (b) NOW YOU TRY O



## The Inverse Composition Rule

A function *f* is one-to-one with inverse function *g* if and only if f(g(x)) = x for every *x* in the domain of *g*, and g(f(x)) = x for every *x* in the domain of *f*.

**EXAMPLE 4** Verifying Inverses

Given the two functions below verify

(a) 
$$f(x) = -\frac{1}{2}(x+3)^2 - 4$$
 &  $g(x) = \sqrt{-2x-8} - 3$  (b)  $f(x) = \frac{x-11}{3}$  &  $g(x) = 3x + 11$ 

Now You Try 
$$\textcircled{O}$$
  
(c)  $f(x) = \frac{2}{x-7} \& g(x) = \frac{2}{x} + 7$  (d)  $f(x) = 5\sqrt[3]{x} - 7 \& g(x) = \frac{(x+7)^3}{125}$