
Pre-Calculus

Notes: Evaluating Limits Graphically

The limit as x approaches c exists iff and only if the left and right hand limit are the same.

$$\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = \lim_{x \to c} f(x)$$

Ex 1) a)
$$\lim_{x \to 1^{-}} f(x) =$$

e)
$$\lim_{x \to 2^{-}} f(x) =$$

$$i) \lim_{x \to 3^{-}} f(x) =$$

$$m) \lim_{x \to 2.5} f(x) =$$

b)
$$\lim_{x \to 1^+} f(x) =$$

$$f) \lim_{x \to 2^+} f(x) =$$

$$j) \lim_{x \to 3^+} f(x) =$$

$$n) \lim_{x \to 4^-} f(x) =$$

c)
$$\lim_{x\to 1} f(x) =$$

g)
$$\lim_{x\to 2} f(x) =$$

$$k) \lim_{x \to 3} f(x) =$$

o)
$$\lim_{x \to 4^+} f(x) =$$

$$d) \ f(1) =$$

h)
$$f(2) =$$

l)
$$f(3) =$$

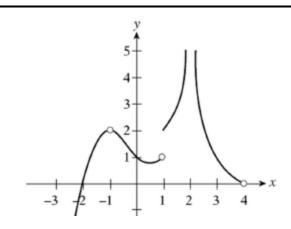
$$p) \lim_{x \to 4} f(x) =$$

Ex 2)
$$f(x) = \frac{3}{x-2}$$

a)
$$\lim_{x \to 2^{-}} f(x) =$$

b)
$$\lim_{x \to 2^+} f(x) =$$

c)
$$\lim_{x\to 2} f(x) =$$


$$\mathrm{d)} \lim_{x \to \infty} f(x) =$$

Ex 3)

a)
$$\lim_{x\to 1} f(x) =$$

b)
$$\lim_{x \to -1} f(x) =$$

c)
$$\lim_{x\to 2} f(x) =$$

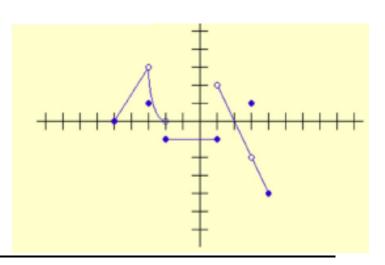
Ex 4) a)
$$\lim_{x \to 3} f(x) =$$

b)
$$\lim_{x \to 0} f(x) =$$

c)
$$\lim_{x \to -3} f(x) =$$
 d) $\lim_{x \to 1^+} f(x) =$

d)
$$\lim_{x \to 1^+} f(x) =$$

e)
$$\lim_{x \to 1^{-}} f(x) =$$
 f) $\lim_{x \to 1} f(x) =$

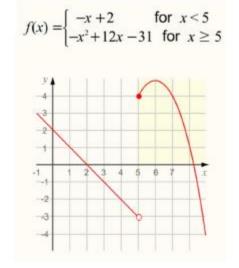

f)
$$\lim_{x \to 1} f(x) =$$

g)
$$\lim_{x \to -2^{-}} f(x) =$$
 h) $\lim_{x \to 4} f(x) =$

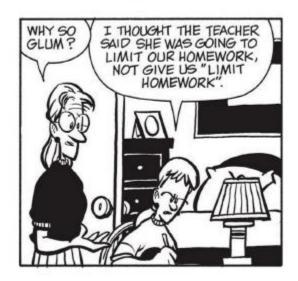
h)
$$\lim_{x \to a} f(x) =$$

i)
$$\lim_{x \to 2} f(x) =$$

$$j) \lim_{x \to -2^+} f(x) =$$



Ex 5) a)
$$\lim_{x \to 5^{-}} f(x) =$$


b)
$$\lim_{x \to 5^+} f(x) =$$

c)
$$\lim_{x \to 5} f(x) =$$

d)
$$f(5) =$$

"Evaluating Limits Graphically" worksheet

