\qquad

Unit 1 Material

Graph the image of the figure using the transformation given and give the algebraic rule.

1) Rotation 90° counter clockwise about the origin

2) reflect of the line $y=-x$

3) Translation 4 units right and 1 down, then reflect over the y-axis

4) Reflect over the the x-axis then the y-axis

Algebraic
Rule:
5) What single transformation can be performed to replicate the composition of transformations in \#4?

Find the coordinates of the vertices of the figure using the transformation given:

> 6) rotation 180° about the origin $E(2,-2), J(1,2), R(3,3), S(5,2)$
> Vertices:
8) translation: 7 units right and 1 unit down
$J(-3,1), F(-2,3), N(-2,0)$ Vertices:
7) reflection across $y=2$

$$
J(1,3), U(0,5), R(1,5), C(3,2)
$$

Vertices:
9) translation: 6 units right and 3 units down $S(-3,3), C(-1,4), W(-2,-1)$
Vertices:

Write a description of the transformation which occurred from the pre-image to image below.
10)

11)

13)

Description:

Algebraic Rule:

Description:

Algebraic Rule:

Graph the image of the figure using the transformation given and write the algebraic rule.
14) rotation 90° clockwise about the origin $B(-2,0), C(-4,3), Z(-3,4), X(-1,4)$

15) reflection across $y=x$

$$
K(-5,-2), A(-4,1), I(0,-1), J(-2,-4)
$$

Algebraic
Rule:

Describe the transformations on the graph and write the algebraic rule.
16)

Description: \qquad

Algebraic Rule: \qquad

Unit 2 Material

1) Find $\mathrm{m} \angle \mathrm{DEG}$ and $\mathrm{m} \angle \mathrm{GEF}$.

2)

Description: \qquad Description: \qquad
Algebraic Rule: \qquad
18)

Algebraic Rule: \qquad
2) Find $\mathrm{m} \angle \mathrm{DBC}$.

3) $\angle 1$ and $\angle 2$ are complementary. $\mathrm{m} \angle 1=2 \mathrm{x}+7$ and $\mathrm{m} \angle 2=4 \mathrm{x}-19$. Find the measure of each angle.
4) $\angle 3$ and $\angle 4$ are supplementary. $m \angle 3=5 x+22$ and $m \angle 4=7 x+2$. Find the measure of each angle.
5) Identify each pair of angles as adjacent, vertical, complementary, supplementary, and/or linear pair.
a) $\angle 1$ and $\angle 2$
b) $\angle 3$ and $\angle 4$
c) $\angle 5$ and $\angle 4$
d) $\angle 3$ and $\angle 5$

6)

7) $\overrightarrow{S T}$ bisects $\angle R S W, m \angle R S T=27^{\circ}$

$$
m \angle T S W=
$$

\qquad $m \angle W S R=$

8) $\overrightarrow{B D}$ bisects $\angle A B C$

Classify each pair of angles as corresponding, alternate interior, alternate exterior, consecutive interior, or consecutive exterior.
9)

10)

11)

12)

13)

14)

Find the values of x and y.
15)

16)

17)

18)

19)

20)

21) $\Delta \mathrm{LMC} \cong \triangle \mathrm{BJK}$

Complete the congruence statements. (Name all congruent angles. Name all congruent sides.)
3. $\overline{L C} \cong$ \qquad

4. $\overline{K J} \cong$
7. $\angle \mathrm{K} \cong$ \qquad
5. $\overline{J B} \cong$ \qquad
8. $\angle \mathrm{M} \cong$ \qquad
6. $\angle \mathrm{L} \cong$ \qquad
6. $\angle \mathrm{L} \cong$
9. $\triangle \mathrm{CML} \cong$ \qquad
10. $\Delta \mathrm{KBJ} \cong$ \qquad
22) Use the figures below to complete the following statements:
a. $\triangle D E F \cong \Delta$ \qquad by $S A S \cong$
b. $\triangle A B C \cong \Delta$ \qquad by SSS§

23) Which two triangles below are congruent by ASA? Write a congruence statement.
Δ \qquad $\cong \Delta$ \qquad by $A S A \cong$

24) Which additional piece of information would allow you to prove that the triangles are congruent by the HL theorem?
(A) $m \angle D F E=40$
(B) $m \angle F=m \angle A B C$
(C) $\overline{A B} \cong \overline{D E}$
(D) $\overline{A C} \cong \overline{D F}$

25) For what values of x and y are the triangles shown congruent?
(F) $x=1, y=4$
(H) $x=4, y=1$
(G) $x=2, y=4$
(I) $x=1, y=3$

State the postulate or theorem you can use to prove each pair of triangles congruent. If the triangles cannot be proven congruent, write not enough information.
26)

27)

29)

31)

Determine whether the following triangles are congruent, if so complete the congruent statement.
32)

33)

34)

$\Delta M J K \cong \Delta$ \qquad by \qquad $\Delta N P R \cong \Delta$ \qquad by \qquad $\Delta \boldsymbol{S} \boldsymbol{R} \boldsymbol{U} \cong \Delta$ \qquad by \qquad

Triangle Congruence Proofs:
35) Given: $\overline{W X} \| \overline{Y Z}, \overline{W X} \cong \overline{Y Z}$

Prove: $\triangle W X Z \cong \triangle Y Z X$

Statements	Reasons

36) Given: $\angle B$ and $\angle D$ are right angles.
$\overline{A E}$ bisects $\overline{B D}$
Prove: $\triangle A B C \cong \triangle E D C$

37) Given: $\overline{R S} \cong \overline{U T}, \overline{R T} \cong \overline{U S}$

Prove: $\angle T \cong \angle S$

38) Given: $\begin{aligned} \overline{B D} & \perp \overline{A B} \\ \overline{B C} & \cong \overline{D C}\end{aligned}$

Prove: $\angle A \cong \angle E$

