\qquad

Notes - Polynomial Functions

EXAMPLE 1 Graphing Transformations of

 Power FunctionsDescribe how to transform the graph of an appropriate monomial function $f(x)=a_{n} x^{\mathrm{n}}$ into the graph of the given function. Sketch the transformed graph by hand compute the location of the y-intercept to check on the graph.
(a) $g(x)=4(x+1)^{3}$
(b) $h(x)=-(x-2)^{4}+5$

NOW YOU TRY :

$\begin{array}{ll}\text { (c) } f(x)=-2(x-3)^{5}-1 & \text { (d) } k(x)=(x-3)^{2 / 3}+2\end{array}$

*raphing Polynomial Functions*****
Not only are graphs of polynomials unbroken without jumps or holes, but they are smooth, unbroken lines or curves, with no sharp corners or cusps.

THEOREM ----A polynomial function of degree \qquad has at most \qquad local extrema and at most \qquad zeros.

End Behavior of Polynomial Functions

In order to determine the end behavior of a polynomial function you need only 2 pieces of information:
$\underline{1}^{\text {st }}$: You must know the \qquad of the polynomial. If the \qquad is \qquad the LEFT

END BEHAVIOR (L.E.B) \& the RIGHT END BEHAIVOR (R.E.B) will be
 If the
\qquad
\qquad then the L.E.B. and the R.E.B. will be \qquad .
$\underline{2^{\text {nd }}}$: You must know the sign of the \qquad
\qquad (_._) .) of the polynomial. If the
\qquad . is POSITIVE then the R.E.B. will be: $\lim _{x \rightarrow \infty} f(x)=$ \qquad . However, if the \qquad is NEGATIVE
then the R.E.B. will be: $\lim _{x \rightarrow \infty} f(x)=$ \qquad $x \rightarrow \infty$

EXAMPLE 2 Applying Polynomial Theory

Sketch the polynomial showing its y-intercept, zeros and its end behavior. Then Describe the end behavior using limits.
(a) $f(x)=x^{3}+2 x^{2}-11 x-12$
(b) $g(x)=2 x^{4}+2 x^{3}-22 x^{2}-18 x+35$
(c) $k(x)=x^{3}-3 x^{2}-4 x+12$
(d) $h(x)=-3 x^{4}+2 x^{3}-22 x^{2}-18 x+35$

Zeros of Polynomial Functions

Recall that finding the real-number zeros of a function f is equivalent to finding the x-intercepts of the graph of $y=f(x)$ or the solutions to the equation $f(x)=0$.

EXAMPLE 3 Finding the Zeros of a Polynomial Function

Find the zeros of $f(x)=x^{3}-x^{2}-6 x$ and then sketch the graph of the polynomial using your knowledge of intercepts and end behavior.

*****DEFINITION Multiplicity of a Zero of a Polynomial Function***** If f is a polynomial function $\&(x-c)^{m}$ is a factor of f but $(x-c)^{m+1}$ is not, then c is a zero of multiplicity \boldsymbol{m} of f.

Zeros of Odd and Even Multiplicity

If a polynomial function f has a real zero c of odd multiplicity, then the graph of f crosses the x-axis at $(c, 0)$ and the value of f changes sign at $x=c$. If a polynomial function f has a real zero c of even multiplicity, then the graph of f does not cross the x-axis at $(c, 0)$ and the value of f does not change sign at $x=c$.

So... If the multiplicity of a zero is 1 it will \qquad typical "straight through" manner.
......If the If the multiplicity of a zero is EVEN it will \qquad at the x -axis
\qquad \& will NOT cross through. the x -axis in the

...if the If the multiplicity of a zero is GREATER THAN $1 \&$ ODD it will \qquad at the x -axis \& WILL cross through.

EXAMPLE 4 Sketching the Graph of a Factored Polynomial

State the degree and list the zeros of the function. State the multiplicity of each zero and whether the graph crosses the x-axis at the corresponding x-intercept. Then sketch the graph of f by hand.
(a) $f(x)=(x+2)^{3}(x-1)^{2}$
(b) $f(x)=x^{2}(x+7)^{3}(x-1)^{4}(x+4)$
(c) $f(x)=x(x+4)^{2}(x-2)^{3}$

