\qquad

Polynomials and Conjugate Roots

Date \qquad Period \qquad

A polynomial function with rational coefficients has the follow zeros. Find all additional zeros.

1) $-1,1+3 i$
2) $-\frac{1}{4}, 1+\sqrt{6}$
$1-3 i$

$$
1-\sqrt{6}
$$

3) -3 mult. 2, $2 \sqrt{2}$

$$
-2 \sqrt{2}
$$

4) $1+\sqrt{3},-3+\sqrt{5}$
$1-\sqrt{3},-3-\sqrt{5}$
5) $1-i, \sqrt{7}$
$1+i,-\sqrt{7}$
6) $-3+2 i,-2-2 i,-2+2 i$
$-3-2 i$

Write a polynomial function of least degree with integral coefficients that has the given zeros.

7) $-\frac{1}{2}, 1, \frac{3}{4}$

$$
f(x)=8 x^{3}-10 x^{2}-x+3
$$

9) 2 mult. 3

$$
f(x)=x^{3}-6 x^{2}+12 x-8
$$

11) $-3, \sqrt{3}$

$$
f(x)=x^{3}+3 x^{2}-3 x-9
$$

12) $1+\sqrt{10}$ mult. 2, $1-\sqrt{10}$

$$
f(x)=x^{4}-4 x^{3}-14 x^{2}+36 x+81
$$

13) -i mult. 2

$$
f(x)=x^{4}+2 x^{2}+1
$$

14) $\frac{4}{5}, 2 i$

$$
f(x)=5 x^{3}-4 x^{2}+20 x-16
$$

Critical thinking questions:

15) Explain why it makes sense that a third-degree polynomial must have at least one rational zero.
It must go from ∞ to $-\infty$ so it must
pross the x-dxis.
Create your own worksheets like this one with Infinite Precalculus. Free trial available at KutaSoftware.com
