Honors Math 2

- Congruent figures: Figures that have the same ______ and ______.
 - When two figures are congruent, you can move one so that it fits exactly on the other. Three ways to make such a move are: a slide, a flip, and a turn.

Congruent Polygons: Polygons that have ______

(their matching sides and angles). Matching vertices are corresponding vertices.

> When you name congruent polygons, you should always list corresponding vertices in the same order.

Correspondence Notation: $ACBX \leftrightarrow PRQY$

IS ACBX ≅ PRQY

Name the corresponding parts in exs 1 & 2.

1. $\Delta TJD \cong \Delta RCF$

- **2**. $\Delta WYS \cong \Delta MKV$
- 3. Find the missing angles and sides if $\triangle ABC \cong \triangle DEF$.

4. Given: $\Delta WYS \cong \Delta MKV$. If m $\angle Y = 35^\circ$, what is m $\angle K$? _____ Why?

5. Are the triangles below congruent? Explain your answer.

5. Do we have enough information to show these triangles are congruent? Explain.

<u>Theorem</u>: If two angles of one triangle are congruent to two angles of another triangle, then the third angles are congruent.

Ways to Prove Triangles Congruent

• <u>Side-Side Postulate</u>: If 3 sides of one triangle are congruent to 3 sides of another triangle, then the triangles are congruent. (SSS)

• <u>Side-Angle-Side Postulate</u>: If 2 sides and the included angle of one triangle are congruent to 2 sides and the included angle of another triangle, then the triangles are congruent. (SAS)

• <u>Angle-Side-Angle Postulate</u>: If 2 angles and the included side of one triangle are congruent to two angles and the included side of anther triangle, then the triangles are congruent. (ASA)

 <u>Angle-Angle-Side Theorem</u>: If two angles and the non-included side of one triangle are congruent to two angles and the non-included side of another triangle, then the triangles are congruent. (AAS)

**Notice how ASA and AAS are different:

Do not confuse SAS with SSA. There is not an SSA reason to prove triangles congruent.

(use triangle to the right for #1 & 2) 1. Which angle is included between \overline{NC} and \overline{AN} ?

2. Which side is included between $\angle C$ and $\angle N$?

(no picture drawn for #3 & 4)

- 3. Which side is included between $\angle X$ and $\angle Z$ in $\triangle XYZ$?
- 4. Which angle is included between \overline{XY} and \overline{XZ} in $\triangle XYZ$?
- 5. What additional information would you need to prove the following two triangles congruent by SAS?

6. Given: $\overline{RE} \cong \overline{CA}; \overline{RD} \cong \overline{CT}; \angle R \cong \angle T$ Is the information enough to prove $\Delta RED \cong \Delta CAT$?

9. Write the congruence statement for the two triangles you can prove congruent by the ASA Postulate.

