Precalculus


Name:

End behavior:  $\lim \ln x = \infty$ 

## Logarithmic functions are inverses **BASIC FUNCTION** The Natural Logarithmic Function functions. of $f(x) = \ln x$ Domain: $(0,\infty)$ Range: All reals Continuous on $(0,\infty)$ Increasing on $(0,\infty)$ No symmetry Not bounded above or below No local extrema No horizontal asymptotes [-2, 6] by [-3, 3] Vertical asymptote: x = 0

Notes --- 2.6 Logarithmic Functions

**Ex1**) Describe how to transform the graph of  $y = \ln x \text{ or } y = \log x$  into the graph of the given function. Then sketch the given function.



CHANGING BETWEEN EXPONENTIAL & LOGARITHMIC FORM

If x > 0, b > 0, &  $b \neq 1$ , then  $y = log_b x$  if and only if  $x = b^y$ 

**Ex2**) Write each of the following in logarithmic or exponential form:

| <u>Log Form</u>                        | Exp Form | Exp Form                                       | <u>Log Form</u> |
|----------------------------------------|----------|------------------------------------------------|-----------------|
| <b>a)</b> $log_2 8 = 3$                | →        | <b>e)</b> $5^2 = 25$                           | →               |
| <b>b)</b> $log_{27} 3 = \frac{1}{3}$   | →        | <b>f)</b> $9^{1/2} = 3$                        | →               |
| <b>c)</b> $log_{\frac{1}{2}} 16 = -4$  | →        | <b>g)</b> $(\frac{1}{4})^{-3} = 64$            | →               |
| <b>d)</b> $log_{25} 125 = \frac{3}{2}$ | →        | <b>h)</b> 64 <sup>-1/6</sup> = <sup>1</sup> /2 | →               |

| Logarithms with base 10 are called _                                                                                                                                                                                | logs & are written without a base.                                                                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| ➢ Logarithms with base e are called                                                                                                                                                                                 | logs & are written with "LN" instead of log                                                       |  |  |  |
| Basic Properties of Logarithms                                                                                                                                                                                      | <b>Ex3</b> ) Evaluate each of the following logs:                                                 |  |  |  |
| For $0 < b \neq 1, x > 0$ , and any real number y,<br>• $\log_b 1 = 0$ because $b^0 = 1$ .                                                                                                                          | (a) $\log_5 125 =$ (b) $\log_7 1 =$ (c) $\log_9 9^4 =$                                            |  |  |  |
| <ul> <li>log<sub>b</sub> b = 1 because b<sup>1</sup> = b.</li> <li>log<sub>b</sub> b<sup>y</sup> = y because b<sup>y</sup> = b<sup>y</sup>.</li> </ul>                                                              | ( <b>d</b> ) $11^{\log_{11} 7} =$ ( <b>e</b> ) $\log_8 32 =$ ( <b>f</b> ) $\log_4 \frac{1}{64} =$ |  |  |  |
| • $b^{\log_b x} = x$ because $\log_b x = \log_b x$ .                                                                                                                                                                | (g) $\log_3 \frac{1}{9} = $ (h) $\log_{\frac{1}{25}} 125 = $                                      |  |  |  |
| When in this form log b x ASK YOURSELF "b to what power equals x"                                                                                                                                                   |                                                                                                   |  |  |  |
| <b>Ex4</b> ) Evaluate each of the following:                                                                                                                                                                        |                                                                                                   |  |  |  |
| ( <b>a</b> ) $\log 100 =$ ( <b>b</b> ) $\log \sqrt[5]{100}$                                                                                                                                                         | $\overline{10} =$ (c) log $\frac{1}{1000} =$ (d) $10^{\log 6} =$                                  |  |  |  |
| Ex5) Solve the simple logarithmic equation                                                                                                                                                                          | ns below by changing them to exponential form:                                                    |  |  |  |
| (a) $\log x = 3$ (b) $\log_2 x = 5$                                                                                                                                                                                 |                                                                                                   |  |  |  |
| Ex6) Evaluate each of the following:<br>(a) $ln \sqrt{e} = $ (b) $ln e^5 = $ (c) $e^{ln 4} = $                                                                                                                      |                                                                                                   |  |  |  |
| Properties of Logarithms                                                                                                                                                                                            | <b>Ex7</b> ) Expand each of the following:                                                        |  |  |  |
| Let <i>b</i> , <i>R</i> , and <i>S</i> be positive real numbers with $b \neq$<br>• <b>Product rule</b> : $\log_b (RS) = \log_b R + \log_b S$<br>• <b>Quotient rule</b> : $\log_b \frac{R}{S} = \log_b R - \log_b S$ | (a) $log (8xy^4)$ (b) $ln\left(\frac{\sqrt{x^2+5}}{x}\right)$                                     |  |  |  |
| • <b>Power rule</b> : $\log_b R^c = c \log_b R$                                                                                                                                                                     | (a)                                                                                               |  |  |  |
| <b>Change-of-Base Formula for Logarithms</b><br>For positive real numbers <i>a</i> , <i>b</i> , and <i>x</i> with $a \neq 1$ and $b \neq 1$<br>$\log_b x = \frac{\log_a x}{\log_a b}$ .                             | (b)                                                                                               |  |  |  |
| <b>Ex8</b> ) Condense the following logarithmic expression: $ln x^5 - 2 ln (xy) = $                                                                                                                                 |                                                                                                   |  |  |  |
| <b>Ex9</b> ) Given that $ln 5 = a \& ln 7 = b$ determine each of the following:                                                                                                                                     |                                                                                                   |  |  |  |
| a) $ln 35 -$ b) $ln (5/7) -$ c                                                                                                                                                                                      | <b>b</b> $ln 175 =$ <b>b</b> $log_57 =$ <b>b</b> $log_735 =$ <b>f</b> $log_5175 =$                |  |  |  |