Name: ____

Notes: Graphs of Rational Functions

Definition------**<u>RATIONAL FUNCTION</u>**: Let f(x) and g(x) be polynomial functions with $g(x) \neq 0$. Then the function given by $h(x) = \frac{f(x)}{g(x)}$ is a *rational function*.

*****<u>Note</u>: The domain of the function h(x) in the above definition is the set of all real numbers except the zeros of g(x)*****

Ex1) Find the domain of f and use limits to describe its behavior at values of x not on its domain.

Is there anything familiar about this graph? Could you have figured out how to Sketch it using transformations of a function we know?

****Graphs of Rational Functions****

END BEHAVIOR ASYMPTOTES :

Situation #1---If the degree of the numerator is LESS than the degree of the denominator there is a ______ asymptote at __ = ____ (just like the reciprocal function). Situation #2---If the degree of the numerator and denominator are the same then there is a ______ asymptote at __ = _____ . Situation #3---If the degree of the numerator is GREATER than the degree of the denominator then there is an ______ asymptote that must be found using division (disregarding the remainder).

VERTICAL ASYMPTOTES:

These will occur at the zeros of the denominator AFTER the rational function has been

REMOVABLE DISCONTINUITIES :

A "HOLE" can be created in a graph when a factor appears in the numerator and denominator and is then "removed" when simplifying the expression. The location of the hole is the point (x, y) where x is the zero corresponding to the cancelled factor & y is the value of the SIMPLIFIED FUNCTION when x is equal to the eliminated zero.

x-INTERCEPTS :

These occur at the zeros of the numerator AFTER the function has been simplified.

y-INTERCEPTS :

This is the value of f(0), if it is defined.

Ex2) Find the asymptotes, holes & intercepts, then sketch the graph.

$\lim_{x \to -\infty} f(x) = _$
$\lim_{x \to \infty} f(x) = \underline{\qquad}$
$\lim_{x \to 0^+} f(x) = \underline{\qquad}$
$\lim_{x \to 0^-} f(x) = \underline{\qquad}$
$\lim_{x \to 0} f(x) = _$

Ex3) Determine asymptotes and/or holes of the functions below, along with intercepts. Then, sketch the graph, & write behavior statements for REB, LEB, & both sides of any vertical asymptotes (VA).

Statements:

 $\lim_{x \to -2} f(x) = _$

Statements:

$$\lim_{x \to \infty} f(x) = _ \lim_{x \to 0^{+}} f(x) = _ \lim_{x \to 4^{-}} f(x) = _ \lim_{x \to 4^{+}} f(x$$

NOW YOU TRY:

Statements:

Statements:

