\qquad

Notes: Graphs of Rational Functions

Definition------RATIONAL FUNCTION: Let $f(x)$ and $g(x)$ be polynomial functions with $g(x) \neq 0$. Then the function given by
$h(x)=\frac{f(x)}{g(x)}$ is a rational function.
*****Note: The domain of the function $h(x)$ in the above definition is the set of all real numbers except the zeros of $g(x)^{* * * * *}$
Ex1) Find the domain of f and use limits to describe its behavior at values of \boldsymbol{x} not on its domain.

****Graphs of Rational Functions****

END BEHAVIOR ASYMPTOTES:

Situation \#1---If the degree of the numerator is LESS than the degree of the denominator there is a \qquad asymptote at \qquad = \qquad (just like the reciprocal function). Situation \#2---If the degree of the numerator and denominator are the same then there is a \qquad asymptote at \qquad = \qquad .
Situation \#3---If the degree of the numerator is GREATER than the degree of the denominator then there is an \qquad
\qquad asymptote that must be found using division (disregarding the remainder).

VERTICAL ASYMPTOTES:
These will occur at the zeros of the denominator AFTER the rational function has been
\qquad .

REMOVABLE DISCONTINUITIES:

A "HOLE" can be created in a graph when a factor appears in the numerator and denominator and is then "removed" when simplifying the expression. The location of the hole is the point (x, y) where x is the zero corresponding to the cancelled factor $\& y$ is the value of the SIMPLIFIED FUNCTION when x is equal to the eliminated zero.

X-INTERCEPTS:

These occur at the zeros of the numerator AFTER the function has been simplified.

y-INTERCEPTS:

This is the value of $f(0)$, if it is defined.

Ex2) Find the asymptotes, holes \& intercepts, then sketch the graph.

$$
f(x)=\frac{x^{2}+2}{x^{2}+1}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)= \\
& \lim _{x \rightarrow \infty} f(x)=
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=
$$

\qquad

$$
\lim _{x \rightarrow 0^{-}} f(x)=
$$

\qquad
$\lim _{x \rightarrow 0} f(x)=$ \qquad

Ex3) Determine asymptotes and/or holes of the functions below, along with intercepts. Then, sketch the graph, \& write behavior statements for REB, LEB, \& both sides of any vertical asymptotes (VA).
A) $f(x)=\frac{x^{2}-2 x-3}{x+2}$
B) $f(x)=\frac{3 x^{2}-11 x-4}{x^{2}-16}$
Holes: \qquad

x-ints: \qquad
y-int: \qquad
VA: \qquad
End Behavior Asymptote:

Statements:

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$$
\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=
$$

$$
\lim _{x \rightarrow-2^{+}} f(x)=\quad \lim _{x \rightarrow-2^{-}} f(x)=
$$

$$
\lim _{x \rightarrow-4^{-}} f(x)=\quad \lim _{x \rightarrow 4^{-}} f(x)=
$$

$\lim _{x \rightarrow-2} f(x)=$ \qquad

$$
\lim _{x \rightarrow-4^{+}} f(x)=\quad \lim _{x \rightarrow 4^{+}} f(x)=
$$

$$
\lim _{x \rightarrow-4} f(x)=\quad \quad \lim _{x \rightarrow 4} f(x)=
$$

\qquad

NOW YOU TRY:
C) $f(x)=\frac{x^{2}-7 x+12}{x^{2}-4}$ Holes: \qquad

D) $f(x)=\frac{2 x^{2}-5 x-12}{4 x^{2}-9}$ Holes: \qquad

Statements:

$\lim _{x \rightarrow-\infty} f(x)=\ldots \quad \lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-2^{-}} f(x)=\square \quad \lim _{x \rightarrow 2^{-}} f(x)=$
$\lim _{x \rightarrow-2^{+}} f(x)=-\quad \lim _{x \rightarrow 2^{+}} f(x)=$
$\lim _{x \rightarrow-2} f(x)=\square \quad \lim _{x \rightarrow 2} f(x)=$

Statements:

$$
\lim _{x \rightarrow-\infty} f(x)=\quad \lim _{x \rightarrow \infty} f(x)=
$$

$$
\lim _{x \rightarrow-3 / 2^{-}} f(x)=-\quad \lim _{x \rightarrow 3 / 2^{-}} f(x)=
$$

$$
\lim _{x \rightarrow-3 / 2^{+}} f(x)=\lim _{x \rightarrow 3 / 2^{+}} f(x)=
$$

$$
\lim _{x \rightarrow-3 / 2} f(x)=
$$

