\qquad

2.8------Exponential \& Logistic Functions

DEFINITION-------Exponential Functions
An EXPONENTIAL FUNCTION is a function that can be written in the form
The constant a is called the \qquad value of f
(Notice this is the value of f at $x=0$)

$$
f(x)=a b^{x}
$$

- a is non-zero number
- b is a positive number
- $b \neq 1$

The constant b is the \qquad
(Notice this is the ONLY number being raised to the x power... a is NOT)
****************************IDENTIFYING EXPONENTIAL FUNCTIONS**************************
Ex1) For each of the following state whether the function is exponential \& its initial value, base, and exponent.
(a) $f(x)=3^{x}$
(b) $g(x)=6 x^{-4}$
(c) $h(x)=-2 \bullet 1.5^{x}$
(d) $k(x)=7 \cdot 2^{-x}$
(e) $q(x)=5 \cdot 6^{\pi}$
****************************EVALUATING EXPONENTIAL FUNCTIONS************************** Ex2) Evaluate each of the following for $f(x)=2^{x}$:
(a) $f(4)=$
(b) $f(0)=$
(c) $f(-3)=$
(d) $f(1 / 2)=$
(e) $f(-3 / 2)=$
*******************************FINDING EXPONENTIAL FUNCTIONS*****************************
Ex3) Given its table of values or its graph, find the equation of the exponential function:
(a)

x	$f(x)$
-2	$6 / 25$
-1	$6 / 5$
0	6
1	30
2	150

(b)

$[-2.5,2.5]$ by $[-10,50]$

$$
f(x)=
$$

\qquad

NOW YOU TRY :

(c) | x | $f(x)$ |
| :---: | :---: |
| -2 | 56 |
| -1 | 28 |
| 0 | 14 |
| 1 | 7 |
| 2 | $7 / 2$ |

(d)

$[-2.5,2.5]$ by $[-25,150]$
$f(x)=$ \qquad

$$
f(x)=
$$

\qquad

Ex4) Describe how to transform the graph of $f(x)=2^{x}$ into each of the given functions and sketch.

$$
g(x)=2^{x-1}
$$

$$
h(x)=2^{-x}
$$

$$
k(x)=3 \cdot 2^{x}
$$

THE NATURAL BASE e
DEFINITION The Natural Base e

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

$$
e \approx
$$

\qquad

Ex5) Describe how to transform $f(x)=e^{x}$ into each of the following functions:

$$
g(x)=e^{2 x}+2
$$

$$
h(x)=-e^{x-3}
$$

$$
k(x)=1 / 2 e^{-x}
$$

BASIC FUNCTION The Logistic Function

$[-4.7,4.7]$ by $[-0.5,1.5]$
FIGURE 3.8 The graph of $f(x)=1 /\left(1+e^{-x}\right)$.
$f(x)=\frac{1}{1+e^{-x}}$
Domain: All reals
Range: $(0,1)$
Continuous
Increasing for all x
Symmetric about $(0,1 / 2)$, but neither even nor odd
Bounded below and above
No local extrema
Horizontal asymptotes: $y=0$ and $y=1$
No vertical asymptotes
End behavior: $\lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=1$

DEFINITION

 -Logistic Growth FunctionsA LOGISTIC GROWTH FUNCTION in x is a function that can be written in the form

$$
f(x)=\frac{c}{1+a \cdot b^{x}} \quad \text { or } \quad f(x)=\frac{c}{1+a \cdot e^{-k x}}
$$

where $a, b, c, \& k$ are positive constants, $b<1 \& c$ is called the \qquad to \qquad .

- All logistic growth functions have graphs like the basic logistic function where the end behavior can be described as:

$$
\lim _{x \rightarrow-\infty} f(x)=0 \text { and } \lim _{x \rightarrow \infty} f(x)=c
$$

- All logistic growth functions are bounded by asymptotes $y=$ \qquad \& $y=$ \qquad
- All logistic growth functions have a range \qquad

GRAPHING LOGISTIC FUNCTIONS**********************************

Ex6) Sketch each of the following logistic growth functions, identify the y-int \& horizontal asymptotes.

(a) $f(x)=\frac{8}{1+3 \bullet 0.7^{x}}$
(b) $g(x)=\frac{20}{1+2 e^{-3 x}}$
y-int: \qquad

Horizontal
Asymptotes: \qquad
Horizontal
Asymptotes: \qquad
y-int: \qquad

