
For each of the following, find all of the intercepts, the domain & range, the local and absolute extrema, and the increasing, decreasing and constant intervals.

- 1) $f(x) = x^4 4x^2 + 2x + 2$ on the interval $(-\infty, \infty)$
- 2) $f(x) = x^4 4x^2 + 2x + 2$ on the interval (-2, 1)

Determine the domain, range, intercepts, holes, asymptotes, extrema, increasing and decreasing intervals for each of the following functions. Only use calculator for extrema & intervals.

3)
$$f(x) = \frac{2x^2 - 13x + 15}{2x^3 - 7x^2 + 6x}$$

4) $g(x) = \frac{3x^3 - x^2 - 4x}{6x^2 + 5x - 6}$

Write a linear factorization for the following graphs.

Find all real and complex roots using the method of your choice.

7)
$$y = x^5 - x^2$$

8) $f(x) = x^3 - 3x^2 + 6x - 18$

9)
$$g(x) = x^4 - 16$$
 10) $y = 2x^2 + 3x - 9$

11)
$$f(x) = 343x^3 + 8$$

12) $h(x) = 8x^2 - 4x - 18$

13)
$$y = 2x^4 + 5x^3 + 4x^2 + 5x + 2$$

14) $f(x) = x^3 - 8x^2 + 29x - 52$

Sketch a graph a graph for each of the following.

15)
$$y = -x(x+4)^3(x-1)^2$$

16) $f(x) = 3(x^2-4)^2$

Write the equation of the polynomial in standard form that has the given roots in standard form.

17) A polynomial with a degree of 3 and root of 3 and 4 - i.

18) A polynomial with a degree of 4 and root of -2 with a multiplicity of 2 and a root of -2i.

19) A polynomial with a degree of 2 and a root of $1 - 3\sqrt{2}$

Operations With Rational Expressions------KEY POINTS TO REMEMBER

- * ALWAYS factor 1sT!!!!!!
- * You DO NOT need LCD when multiplying and dividing
- * Remember how you work with regular fractions to add them, follow the SAME process
 * When adding/subtracting DO NOT cancel the factors YOU multiplied in to make the LCD before you add/subtract

Perform each of the following operations, write your answer in the SIMPLIEST form possible, & state the restrictions.

$$20) \frac{6x^2 - 7x - 3}{8x^2 - 2x - 15} \qquad \qquad 20) \frac{x^2 + 16x + 55}{x^2 - 8x - 65} \cdot \frac{x^3 - 11x^2 - 26x}{x^2 + 13x + 22}$$

21)
$$\frac{x^4 - 1}{x^3 - 3x^2 + x - 3} \cdot (4x^2 - 7x - 15)$$
 22) $\frac{x^3 + 64}{x^2 - 16} \div (x^2 - 8x + 16)$

23)
$$\frac{5x^2}{2x^2+5x-33} \div \frac{5x^3-20x}{2x^2+15x+22}$$
 24) $\frac{x-1}{x^2-17x+72} - \frac{x}{x^2-3x-54}$

25)
$$\frac{\frac{x}{3}+5}{7+\frac{6}{x}}$$
 26) $\frac{\frac{5}{x-2}}{\frac{1}{x-2}+\frac{2}{x+1}}$ 27) $\frac{\frac{(x+y)^3}{x^2-y^2}}{\frac{(x^2+2xy+y^2)}{x^3-y^3}}$

Solving Rational Equations-----KEY POINTS TO REMEMBER

- * Factor 1st & Simplify if you can
- * Find the LCD & multiply EVERY SINGLE term in the equation by that LCD to clear ALL fractions.
- * CHECK EVERY ANSWER!!!!

28)
$$\frac{x-2}{x+4} + \frac{x+1}{x+6} = \frac{11x+32}{x^2+10x+24}$$
 29) $\frac{x+3}{x+2} = 1 - \frac{x+1}{x+2}$

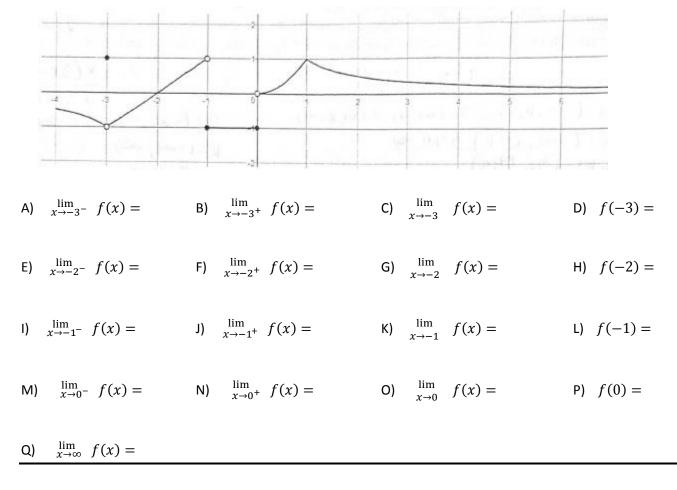
30)
$$\frac{3x}{x-7} - \frac{1}{x-2} = \frac{5}{x^2 - 9x + 14}$$
 31) $\frac{2}{x+3} - \frac{3}{4-x} = \frac{2x-2}{x^2 - x - 12}$

Solving Rational & Polynomial Inequalities------KEY POINTS TO REMEMBER

* Factor 1st & Simplify if you can

* If there are rational expressions on BOTH sides you MUST move them to ONE side

- * You CANNOT EVER multiply an INEQUALITY by the LCD on both sides
- * When using a SIGN CHART SHOW ALL WORK!!!


* If using a sketch of the polynomial to solve, then you MUST CLEARLY show the LABELED SKETCH

32)
$$\frac{3}{4} + \frac{x}{2} > \frac{5}{x}$$
 33) $\frac{6}{x+3} > x+8$ 34) $\frac{8}{x-3} + \frac{8}{x+1} \ge -3$

35)
$$\frac{10}{x-4} + x \ge \frac{3x-2}{x-4}$$
 36) $(2x-4)(x-3) > 0$ 37) $\frac{(x-1)^2}{(x+1)(x+2)} > 0$

38)
$$\frac{x^2 - 4}{x^2 + 4} \ge 0$$
 39) $\frac{3 + x}{3 - x} \ge 1$ 40) $x^3 + 9x^2 + 20x + 12 < 0$

41) Determine the limits and evaluate the function at the given value.

Graphing Rational Functions------KEY POINTS TO REMEMBER

* ALWAYS factor 1ST, if the expression simplifies there is a HOLE in the graph.

* If there is a hole in the graph, ALL FURTHER CALCULATIONS should be done using the SIMPLIFIED expression

* Real zeros of the numerator (using the SIMPLIFIED version) are x-intercepts of the function

* Real zeros of the denominator (using the SIMPLIFIED version) are the locations of the VERTICAL ASYMPTOTES

- * Look at your notes for the THREE situations to determine the end behavior asymptotes of the function
- * Look at your notes or the textbook to determine what the following notation means
- * Asymptotes are written as EQUATIONS (look in your notes/textbook to clarify)

42) Determine the holes, intercepts, asymptotes, and then sketch each of the following:

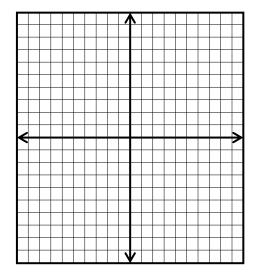
a)
$$f(x) = \frac{x^2 - 4}{x^2 - 9}$$
 b) $f(x) = \frac{3x^2 - x - 4}{9x^3 + 9x^2 - 16x - 16}$

Hole(s): (____, ____) (____, ____)

x-int: (___, ___) (___, ___) (___, ___)

y-int: (____, ____)

Eqs of ALL Asymptotes: _____


State End Behavior

Hole(s): (,) (,)
<i>x</i> -int: (,) (,) (,)
<i>y</i> -int: (,)

Eqs of ALL Asymptotes:

State End Behavior

												
					-							
						-						
	-		-	-		-	-				-	
						_					<u> </u>	
				-		_			-		-	
		-		-		-				-	-	
						_					-	
					1	/						

