\qquad

Right Triangle Trig Practice

THIS IS TO BE DONE ENTIRELY NON-CALCULATOR (however, you may use one to check your answers) Find the EXACT value of \boldsymbol{x}.

1) $\angle \mathrm{N}=30^{\circ}, \mathrm{NC}=52, \mathrm{CY}=x$

2) $\angle \mathrm{C}=45^{\circ}, \mathrm{TC}=46, \mathrm{TY}=x$

3) $\angle \mathrm{E}=45^{\circ}, \mathrm{PU}=8, \mathrm{PE}=x$

4) $\angle \mathrm{V}=60^{\circ}, \mathrm{LV}=42, \mathrm{LJ}=x$

5) $\angle \mathrm{A}=45^{\circ}, \mathrm{AD}=7 \sqrt{2}, \mathrm{AE}=x$

6) $\angle \mathrm{M}=60^{\circ}, \mathrm{PM}=4 \sqrt{3}, \mathrm{PD}=x$

7) Which of the following is a Pythagorean Triple? (Can be more than one answer)
A. 7-24-25
B. $6-8-10$
C. $5-12-13$
D. 8-15-17
E. 9-40-41
8) Which of the following is equivalent to $\cos 42^{\circ}$?
A. $\sin 48^{\circ}$
B. $\sin 42^{\circ}$
C. $\csc 42^{\circ}$
D. $\cos 48^{\circ}$
E. $\sec 48^{\circ}$
9) For $\triangle \mathrm{ABC}$, with hypotenuse AC , if $\sin \mathrm{A}=0.6428$, then $\cos \mathrm{C}$ is \qquad
A. $1+0.6428$
B. $1-0.6428$
C. 0.6428
D. $90^{\circ}-0.6428$
E. $180^{\circ}-0.6428$
10) Using the diagram below find the balloon's height, h , above the ground.
A. $106 \cos \left(37^{\circ}\right)$
B. $106 \tan \left(37^{\circ}\right)$
C. $106 \div \sin \left(37^{\circ}\right)$
D. $\sin \left(37^{\circ}\right) \div 106$
E. $106 \sin \left(37^{\circ}\right)$

11) A $5.5-\mathrm{m}$ ladder is resting against a wall. If the ladder makes an angle of 60° with the ground, how far from the wall is the base of the ladder, and how high up the wall does the ladder reach?
A. 2.75 m from the wall and $2.75 \sqrt{3} \mathrm{~m}$ up the wall
B. $2.75 \sqrt{3} \mathrm{~m}$ from the wall and 2.75 m up the wall
C. 2.75 m from the wall and $2.75 \sqrt{2} \mathrm{~m}$ up the wall
D. $\quad 2.75 \sqrt{2} \mathrm{~m}$ from the wall
E. None of these and 2.75 m up the wall
12) An underground parking lot is being constructed 8 m below ground level. If the exit ramp is to rise at an angle of 15°, how long will the ramp be?
A. $8 \div \tan \left(15^{\circ}\right)$
B. $8 \tan \left(15^{\circ}\right)$
C. $8 \div \sin \left(15^{\circ}\right)$
D. $\sin \left(15^{\circ}\right) \div 8$
E. $8 \sin \left(15^{\circ}\right)$
13) The shadow of a tree is 20 m long. The angle of elevation to the top of the tree is 50°. What is the height of the tree?
A. $20 \div \tan \left(50^{\circ}\right)$
B. $20 \tan \left(50^{\circ}\right)$
C. $20 \div \sin \left(50^{\circ}\right)$
D. $\tan \left(50^{\circ}\right) \div 20$
E. $20 \sin \left(50^{\circ}\right)$
14) A pilot of a navy jet is about to land on an aircraft carrier. At an altitude of 1000 m above the carrier's deck, the pilot observes the carrier at an angle of depression of 15°. Calculate the exact distance that the jet will fly on its landing descent to the carrier.
A. $1000 \div \tan \left(15^{\circ}\right)$
B. $1000 \tan \left(15^{\circ}\right)$
C. $1000 \div \sin \left(15^{\circ}\right)$
D. $\tan \left(15^{\circ}\right) \div 1000$
E. $1000 \sin \left(51^{\circ}\right)$
15) The base of a 9.0 m ladder is $4.5 \sqrt{2} \mathrm{~m}$ from the wall of a building. What is the angle of elevation of the ladder? (Draw a diagram and solve)
16) I measured the length of a tree's shadow twice today. Once when the angle of depression from the sun to the top of the tree was 30° and once when it was 60°. If the difference in the length of the two shadows I measured was 40 ft , how tall is the tree? (Draw a diagram and solve)
