Precalculus

$$y = a \cdot \sin(b(x-h)) + k$$
 or $y = a \cdot \cos(b(x-h)) + k$

KEY TERMS:

amplitude	
period	
frequency	
midline	
phase shift	

Ex1) Find the amplitude of each of the following sinusoids & then use the language of transformations to describe how the graphs of b and c are related to a.

a) $f(x) = \cos x$	b) $y = \frac{1}{2}\cos x$	c) $y = -3\cos x$
amp =	amp =	amp =

- **Ex2**) Find the period of each of the following sinusoids & then use the language of transformations to describe how the graphs of b and c are related to a.
 - a) $f(x) = \sin x$ b) $y = 3\sin(-2x)$ c) $y = -2\sin\left(\frac{x}{3}\right)$ $pd = ___$ $pd = ___$ $pd = ___$
- Ex3) Find the frequency of the function $f(x) = 4 \sin\left(\frac{2x}{3}\right)$ and interpret its meaning graphically. Then sketch the graph in the window $[-2\pi, 2\pi]$ by [-4, 4]

 $\cos(x) =$ _____ $\sin(x) =$

b) Write the sine function as a phase shift of the cosine function. \rightarrow sin (x) = _____

Ex6) Construct a sinusoid that rises from a minimum value at (0, 5) to a maximum value of (32, 25)

Graphs of Sinusoids

The graphs of $y = a \sin (b(x - h)) + k$ and $y = a \cos (b(x - h)) + k$ (where $a \neq 0$ and $b \neq 0$) have the following characteristics:

amplitude = |a|;

period
$$= \frac{2\pi}{|b|};$$

frequency $= \frac{|b|}{2\pi}.$

When compared to the graphs of $y = a \sin bx$ and $y = a \cos bx$, respectively, they also have the following characteristics:

a phase shift of *h*;

a vertical translation of *k*.