\qquad

$$
\begin{gathered}
\text { Notes (4.6) --- Graphing Sinusoids } \\
y=a \cdot \sin (b(x-h))+k \quad \text { or } \quad y=a \cdot \cos (b(x-h))+k
\end{gathered}
$$

KEY TERMS:

amplitude	
period	
frequency	
midline	
phase shift	

Ex1) Find the amplitude of each of the following sinusoids \& then use the language of transformations to describe how the graphs of b and c are related to a.
a) $f(x)=\cos x$
b) $y=1 / 2 \cos x$
c) $y=-3 \cos x$
$\mathrm{amp}=$ \qquad
$\mathrm{amp}=$ \qquad
$\mathrm{amp}=$ \qquad

Ex2) Find the period of each of the following sinusoids \& then use the language of transformations to describe how the graphs of b and c are related to a.
a) $f(x)=\sin x$
b) $y=3 \sin (-2 x)$
c) $y=-2 \sin \left(\frac{x}{3}\right)$
$\mathrm{pd}=$ \qquad
$\mathrm{pd}=$ \qquad
$\mathrm{pd}=$ \qquad

Ex3) Find the frequency of the function $f(x)=4 \sin \left(\frac{2 x}{3}\right)$ and interpret its meaning graphically. Then sketch the graph in the window $[-2 \pi, 2 \pi]$ by $[-4,4]$

Ex4)
a) Write the cosine function as a phase shift of the sine function. \rightarrow
$\cos (x)=$ \qquad
b) Write the sine function as a phase shift of the cosine function.
\rightarrow
$\sin (x)=$ \qquad

Ex5) Construct a sinusoid with a period of $\frac{\pi}{5}$, amplitude 6 , passing through the point $(2,0)$ $f(x)=$ \qquad

Ex6) Construct a sinusoid that rises from a minimum value at $(0,5)$ to a maximum value of $(32,25)$

Graphs of Sinusoids

The graphs of $y=a \sin (b(x-h))+k$ and $y=a \cos (b(x-h))+k($ where $a \neq 0$ and $b \neq 0$) have the following characteristics:

$$
\begin{aligned}
& \text { amplitude }=|a| ; \\
& \text { period }=\frac{2 \pi}{|b|} ; \\
& \text { frequency }=\frac{|b|}{2 \pi} .
\end{aligned}
$$

When compared to the graphs of $y=a \sin b x$ and $y=a \cos b x$, respectively, they also have the following characteristics:
a phase shift of h;
a vertical translation of k.

