READY, SET, GO! Name
 Period
 Date

READY

A golf-pro practices his swing by driving golf balls off the edge of a cliff into a lake. The height of the ball above the lake (measured in meters) as a function of time (measured in seconds and represented by the variable t) from the instant of impact with the golf club is

$$
58.8+19.6 t-4.9 t^{2}
$$

The expressions below are equivalent:

$-4.9 t^{2}+19.6 t+58.8$	standard form
$-4.9(t-6)(t+2)$	factored form
$-4.9(t-2)^{2}+78.4$	vertex form

1. Which expression is the most useful for finding how many seconds it takes for the ball to hit the water? Why?
2. Which expression is the most useful for finding the maximum height of the ball? Justify your answer.
3. If you wanted to know the height of the ball at exactly 3.5 seconds, which expression would help the most to find the answer? Why?
4. If you wanted to know the height of the cliff above the lake, which expression would you use? Why?

SET

Topic: Finding multiple representations of a quadratic One form of a quadratic function is given. Fill-in the missing forms.

Need help? Visit www.rsgsupport.org

[^0]e. Graph

c. Factored Form
$y=-3(x-1)^{2}+3$
b. Vertex Form

Show the first differences and the second differences.
d. Table (Include the vertex and at least 2 points on each side of the vertex.)

x	y

Need help? Visit www.rsgsupport.org

[^1]STRUCTURES OF EXPRESSIONS - 2.10

9 a. Standard Form		b. Verte		c. Fact	ored Skip	Form this for now
d. Table			e. Graph			
x	y			\cdots	1	\cdots
0	12			-		\cdots
1	2					-
2	-4			-		-
3 4	-6			-		-
5	2			-		-
6	12					-
Show the first differences and the second differences.						-
						\square

GO
Topic: Factoring Quadratics
Verify each factorization by multiplying.
10. $x^{2}+12 x-64=(x+16)(x-4)$
11. $x^{2}-64=(x+8)(x-8)$
12. $x^{2}+20 x+64=(x+16)(x+4)$
13. $x^{2}-16 x+64=(x-8)(x-8)$

Factor the following quadratic expressions, if possible. (Some will not factor.)
14. $x^{2}-5 x+6$
15. $\mathrm{x}^{2}-7 \mathrm{x}+6$
16. $x^{2}-5 x-36$
17. $m^{2}+16 m+63$
18. $s^{2}-3 s-1$
19. $x^{2}+7 x+2$
20. $x^{2}+14 x+49$
21. $x^{2}-9$
22. $c^{2}+11 c+3$
23. Which quadratic expression above could represent the area of a square? Explain.
24. Would any of the expressions above NOT be the side-lengths for a rectangle? Explain.

Need help? Visit www.rsgsupport.org

Page 71

[^0]: Mathematics Vision Project
 Licensed under the Creative Commons Attribution CC BY 4.0
 mathematicsvisionproject.org

[^1]: Mathematics Vision Project
 Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

