READY, SET, GO!

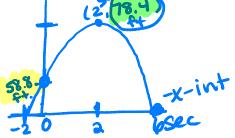
Name

Period

Date

READY

A golf-pro practices his swing by driving golf balls off the edge of a cliff into a lake. The height of the ball above the lake (measured in meters) as a function of time (measured in seconds and represented by the variable t) from the instant of impact with the golf club is



The expressions below are equivalent:

$$-4.9t^2 + 19.6t$$
 $\begin{array}{r} -58.8 \\ -4.9(t-6)(t+2) \end{array}$

standard form factored form

- 1. Which expression is the most useful for finding how many seconds it takes for the ball to hit the water? Why? Factored form gives the x-intercepts
- 2. Which expression is the most useful for finding the maximum height of the ball?

 Justify your answer.

 Vertex Form gives the maximum
- 3. If you wanted to know the height of the ball at exactly 3.5 seconds, which expression would help the most to find the answer? Why? Any form, Plug in 3.5 for x and
 4. If you wanted to know the height of the cliff above the lake, which expression would you use?
- 4. If you wanted to know the height of the cliff above the lake, which expression would you use?

 Why? Standard Form tells the y-intercept

SET

Topic: Finding multiple representations of a quadratic

One form of a quadratic function is given. Fill-in the missing forms.

5 a. <i>Standard Form</i>	b. Vertex Form		c. Factored Form	
$y=x^2+2x-15$	y=(x+1)	2-16	y = (x+5)(x-3)	
d. <i>Table</i> (Include the vertex and at on each side of the vertex.)	least 2 points	e. Graph	32 + 7	
<u>x</u> <u>y</u>			10-	
_2 -15 -1 -16			-3+	
30				,
Show the first differences and the s	econd			

Show the first differences and the second differences.

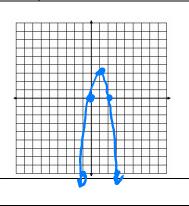
 $y = (x^2 + 2x + 1) - 15 - 1$ $(x+1)^2 - 16$ Need help? Visit www.rsgsupport.org

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvision project.org 6 a. Standard Form

b. Vertex Form

$$y = -3(x-1)^2 + 3$$

c. Factored Form


$$y = -3x(x-2)$$

d. *Table* (Include the vertex and at least 2 points on each side of the vertex.)

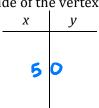
X	У		
0 1 2	030		

Show the first differences and the second differences.

e. Graph

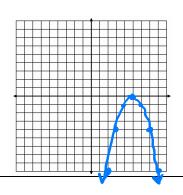
7 a. Standard Form

$$y = -x^2 + 10x - 25$$


b. Vertex Form

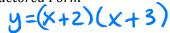
$$y = -(x - 5)^2$$

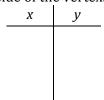
c. Factored Form


$$y = -(x-5)(x-5)$$

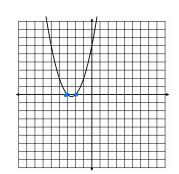
d. *Table* (Include the vertex and at least 2 points on each side of the vertex.)

Show the first differences and the second differences.


e. Graph


8 a. Standard Form

b. Vertex Form


c. Factored Form

d. *Table* (Include the vertex and at least 2 points on each side of the vertex.)

Show the first differences and the second

n= (x+5)5 1

 $y=(x+\frac{5}{3})^2-\frac{1}{4}$

Need help? Visit www.rsgsupport.org

Mathematics Vision Project

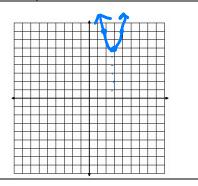
Licensed under the Creative Commons

Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvision project.org

9 a.	Standard Forn	n

$$y = 2x^2 - 12x + 12$$

b. Vertex Form


c. Factored Form

Skip this for now

d. Table

X	У	2
0	12	y=2(x-3)2-6
1	2	1
2	-4	
3	-6	
4	-4	2
5	2 💠	• 😉
6	12 🛧	· 9)

e. Graph

Show the first differences and the second differences.

GO

Topic: Factoring Quadratics

Verify each factorization by multiplying.

10.
$$x^2 + 12x - 64 = (x + 16)(x - 4)$$

$$x^2 - 4x + 16x - 64$$

$$x^2 + 12x - 64$$

12.
$$x^2 + 20x + 64 = (x + 16)(x + 4)$$

11.
$$x^2 - 64 = (x + 8)(x - 8)$$

= $x^2 - 8x + 8x - 64$
= $x^2 - 64 = (x + 8)(x - 8)$

13.
$$x^2 - 16x + 64 = (x - 8)(x - 8)$$

 $x^2+20x+64$ = x^2-10 Factor the following quadratic expressions, if possible. (Some will not factor.)

$$(x-3)(x-2)$$

$$(x - 9)(x + 4)$$

18.
$$s^2 - 3s - 3$$

19. $x^2 + 7x + 2$

20. $x^2 + 14x + 49$

21.
$$x^2 - 9$$

22. $c^2 + 11c + 3$ Drime

23. Which quadratic expression above could represent the area of a square? Explain.

factors are the same 世20

24. Would any of the expressions above NOT be the side-lengths for a rectangle? Explain.

世18、出19、比22 They do not factor.

Need help? Visit www.rsgsupport.org

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

