\qquad

Notes (5.1)---Law of Sines

Objective: You will be able to understand the proof of the Law of Sines and will be able to use the formula to solve a variety of problems.
:
The Law of Sines states the ratio of the sine of an angle to the length its opposite angle is the same for all three angles.

In any $\triangle A B C$ with angles A, B, and C opposite sides a, b, and, c respectively, the following equation is true:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

We can use the Law of Sines to solve triangles when given \qquad \& \qquad .

We can also, use Law of Sines to solve triangles when given \qquad . However, we need to watch out for the ambiguous case.

Ex 1: Solve $\triangle A B C$: $\mathrm{A}=50^{\circ}, \mathrm{B}=62^{\circ}, \mathrm{a}=4$.
Ex 2: Solve $\triangle A B C$: $\mathrm{B}=82^{\circ}, \mathrm{b}=17, \mathrm{c}=15$.

Ex 3: Solve $\triangle A B C: C=36^{\circ}, \mathrm{b}=17, \mathrm{c}=16 . \quad$ Ex 4: Solve $\triangle A B C: A=36^{\circ}, a=2, b=7$

Ex 5: A satellite passes over two tracking stations, A and $\boldsymbol{B}, 100 \mathrm{~km}$ apart. When the satellite is between the two stations the angle of elevation at the stations are measured as 84.5° and 88.2° respectively. What is the distance the satellite and station A.? How high is the satellite of the ground?

Now you try. :)
To find the distance across a river, a surveyor chooses point A and B, which are 200 ft . apart on one side of the river. She chooses a reference point C on the opposite side of the river and finds that $<B A C=82^{\circ}$ and $\angle A B C=52^{\circ}$. Find the distance across the river.

