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Pre-Calculus

Name: __Aj;[/_-{f'i/_
. Notes—(6.1) Vectors in the Plane

are

e Quantities that have both (‘ \Y € ’. 1Y\ & WMOAN Y ~"’? 4
represented by vectors. ' } v

e Vectors are defined by magnitude and direction. (NOT by location)
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e Lowercase boldface letters such as v,uand w are used to represent vectors.
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e Two vectors are equal if their corresponding directed line segments have the same length &
direction.

» Two vectors are equal if and only if they have the same component form.

Component Form of Vector:

. “Component form” means we have an initial point at (0,0) and termlnal point (v, vz)

<z \J \ —
~. '\; v l) ) i 2 O)
e To find component form of a vector with initial point (x4,y1) and terminal point (X2, y):

(V1,V2) = (X2 — X1, Y2 — Y1)

e v, is the horizontal component e V3 is the vertical component

Vi =X2— X% V2=Y,—¥,

Ex 1) Let u be the vector represented by the directed line segment from R = (-4, 2) to
S = (-1, 6), & v the vector from O (0, 0) to P = (3, 4). Provethatu=v.
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Ex 2) Let u be the vector represented by the directed line segment from R = (7, -3) to
S = (4, -5), & v the vector from O (0, 0) to P = (-3, -2). Proveu=v
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The magnitude (o length) of veotor v
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(*1, 1) and G = (x2, ¥2)
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Naotea: The vaolor O = (0,0), called the zero vector, has () lanigh a0 diraction.
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Ex3) Ps(

B,0) and ) = (~6,5) Vind the component form & magnitude of vector
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DEFINITION - Vector Addition and Scalar Multiplication
Let u = (u;,1,) and v = (v,,v,)be vectors and let k be a real number (scalar), .

The sum (or resultant vector) of u + v is the vector,  u+ v = (i 4 vy, 1y + vy)

The scalar product of vector u and scalar k is the vector:  ku = (leu,, ku,)
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Ex4) Given u=(~1,2)and v = (2, 5)find the component form each of the following vectors:
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Now You'lry @
Ex ) Givenu=(5-2)and v = (6,4)find the component form each of the following vectors:

4 u-v b) Su C)3u+ (-2)v
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DEFINITION --- Unit Vectors and the standard Unit Vectors

A vector u with length 1 is called a AN ) —\ \JC('\\'DW . to create a unit
vector u in the direction of v simply divide vector v by its magnitude: u= |_"_| = |_Liv
v v

The two unit vectors i = (1, 0) and j = (0, 1) are the standard unit vectors and can be used
to write a vector as a linear combination of i & j.

L

Ex5) Find a unit vector in the direction of v = (-3, 2), and verify that it has a length equal to 1.
Then write the answer in both component form and as a linear combination of the
standard unit vectors.
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The component form of the vector u < 2-\0¥ < ’3 N
a unit vector in the direction of v is “@ e 177 W ¥ \e dov
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DEFINITION --- Direction Angle
To precisely specify the direction of a vector state its direction angle 6 (made by the vector and the
positive x-axis)
Using trigonometry, we can see the horizontal component of a vector v is (Jvjcos 8) and the vertical
component ' . )
is (|v|sin 0), thus: v = (|vlcos 0)i + (|v|sin 8)j = {|v|cos O, |v|sin 6)
Ex6) Find the components of vector v W|th Ex7) Find the magnitude & direction angle
direction angle 6 = 115° and magnitude of 6. of each vector:
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