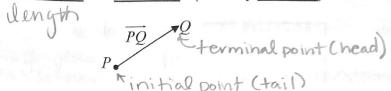
Notes—(6.1) Vectors in the Plane

- Quantities that have both direction & magnitude are represented by vectors.
- Vectors are defined by <u>magnitude</u> and <u>direction</u>. (NOT by <u>location</u>)



• Lowercase boldface letters such as v, u and w are used to represent vectors.

or P Q Rhead V

- Two vectors are equal if their corresponding directed line segments have the same length & direction.
- Two vectors are equal if and only if they have the same *component form*.

Component Form of Vector:

"Component form" means we have an initial point at (0,0) and terminal point (v_1,v_2)

• To find component form of a vector with initial point (x_1,y_1) and terminal point (x_2,y_2) :

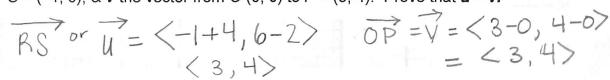
$$\langle v_1, v_2 \rangle = \langle x_2 - x_1, y_2 - y_1 \rangle$$

- v₁ is the <u>horizontal</u> component
- ullet v_2 is the <u>vertical</u> component

$$v_1 = x_2 - x_1$$

$$v_2 = y_2 - y_1$$

Ex 1) Let \boldsymbol{u} be the vector represented by the directed line segment from R = (-4, 2) to S = (-1, 6), & \boldsymbol{v} the vector from O(0, 0) to P = (3, 4). Prove that $\boldsymbol{u} = \boldsymbol{v}$.



Ex 2) Let \boldsymbol{u} be the vector represented by the directed line segment from R = (7, -3) to S = (4, -5), & \boldsymbol{v} the vector from O(0, 0) to P = (-3, -2). Prove $\boldsymbol{u} = \boldsymbol{v}$

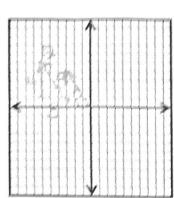
$$\overrightarrow{RS} = \overrightarrow{U} = \langle 4-7, -5--3 \rangle$$
 $\overrightarrow{OP} = \overrightarrow{V} = \langle -3-0, -2-0 \rangle$
= $\langle -3, -2 \rangle$ = $\langle -3, -2 \rangle$

The <u>magnitude</u> (or length) of vector $\mathbf{v} = \overrightarrow{PQ}$ determined by $P = (x_1, y_1)$ and $Q = (x_2, y_2)$

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2} \left(= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \right)$$

<u>Note</u>: The vector 0 = (0,0), called the zero vector, has 0 length and 0 direction. Practice

Ex 3) P=(-3,1) and Q=(-6,5) Find the component form & magnitude of vector



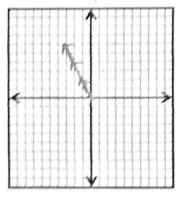
DEFINITION --- Vector Addition and Scalar Multiplication

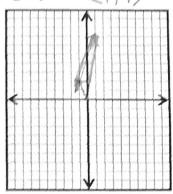
Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be vectors and let k be a real number (scalar).

The sum (or resultant vector) of u + v is the vector: $u + v = (u_1 + v_1, u_2 + v_1)$

The **scalar product** of vector **u** and scalar **k** is the vector: $k\mathbf{u} = \langle ku_1, ku_2 \rangle$

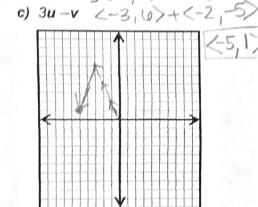
Ex 4) Given $u = \langle -1, 2 \rangle$ and $v = \langle 2, 5 \rangle$ find the component form each of the following vectors: 3<-1,2)-<2,57





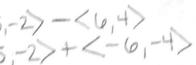
<-1+2,2+5>

c) 3u + (-2)v



Now You Try @

Ex 5) Given u = (5, -2) and v = (6, 4) find the component form each of the following vectors:



a)
$$u-v$$
 b) $5u$ c) $3u+(-2)v$ $<5,-2>-2<6,4> <5,-2>+<-6,-4> <25,-10> <15,-6>+<-12,-8> <3,-14>$

DEFINITION --- Unit Vectors and the standard Unit Vectors

A vector u with length 1 is called a _______ Vector vector \mathbf{u} in the direction of \mathbf{v} simply divide vector \mathbf{v} by its magnitude: $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{|\mathbf{v}|} \mathbf{v}$ The two unit vectors $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$ are the <u>standard unit vectors</u> and can be used to write a vector as a linear combination of i & j.

Ex5) Find a unit vector in the direction of $\mathbf{v} = \langle -3, 2 \rangle$, and verify that it has a length equal to 1. Then write the answer in both component form and as a linear combination of the standard unit vectors.

 $||y|| = \sqrt{[-3]^2 + 2^2} = \sqrt{9 + 4}$ The component form of the vector $\mathbf{u} = \begin{pmatrix} -3 & 2 \\ \sqrt{13} & \sqrt{13} \end{pmatrix}$ a unit vector in the direction of \mathbf{v} is $\frac{-3}{\sqrt{13}} = \frac{2\sqrt{13}}{\sqrt{13}}$ a unit vector in the direction of \mathbf{v} is $\frac{-3\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{13}}{\sqrt{13}}$ a unit vector in the direction of \mathbf{v} is $\frac{-3\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{13}}{\sqrt{13}}$

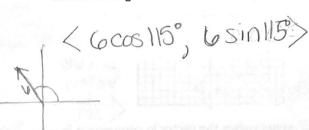
u written as a linear combination of the standard unit vectors i & j is $\frac{-3\overline{13}}{13} + \frac{2\overline{13}}{13} = \sqrt{\frac{-3}{13}} + \frac{2}{13} = \sqrt{\frac{9}{13}} + \frac{1}{13}$

DEFINITION --- Direction Angle

To precisely specify the direction of a vector state its $\underline{\text{direction angle}}\ \theta$ (made by the vector and the positive x-axis)

Using trigonometry, we can see the horizontal component of a vector \mathbf{v} is ($|\mathbf{v}|\cos\theta$) and the vertical component $\mathbf{v} = (|\mathbf{v}|\cos\theta)\mathbf{i} + (|\mathbf{v}|\sin\theta)\mathbf{j} = \langle |\mathbf{v}|\cos\theta, |\mathbf{v}|\sin\theta\rangle$ is ($|\mathbf{v}|\sin\theta$), thus:

- Ex6) Find the components of vector \mathbf{v} with direction angle θ = 115° and magnitude of 6.
- Ex7) Find the magnitude & direction angle of each vector:



 $3 = \sqrt{13} \cos \theta$