Pre-Calculus

Objectives: You will be able to calculate dot products, the angle between two vectors, and projections of vectors.

DEFINITION --- Dot product

The *dot product* or *inner product* of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is \rightarrow $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$

- **Ex1**) Find each dot product:
 - a) $\langle 3, 4 \rangle \bullet \langle 5, 2 \rangle$ b) $\langle 1, -2 \rangle \bullet \langle -4, 3 \rangle$ c) $(2\mathbf{i} \mathbf{j}) \bullet (3\mathbf{i} 5\mathbf{j})$

Properties of the Dot product Let u , v , and w be vectors and let <i>c</i> be a scalar.		
	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$	4. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
2.	$\mathbf{u} \bullet \mathbf{u} = \mathbf{u} ^2$	$(\mathbf{u} + \mathbf{v}) \bullet \mathbf{w} = \mathbf{u} \bullet \mathbf{w} + \mathbf{v} \bullet \mathbf{w}$
3.	$0 \bullet \mathbf{u} = 0$	5. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$

Ex2) Use the dot product to find the length of vector $\mathbf{u} = \langle 4, -3 \rangle$

THEOREM ------ Angle Between Two Vectors
$$\cos \theta = \frac{u \cdot v}{|u||v|}$$
 and $\theta = \cos^{-1} \left(\frac{u \cdot v}{|u||v|} \right)$

Ex3) Find the angle between two vectors **u** & **v**.

a)
$$\mathbf{u} = \langle 2, 3 \rangle, \mathbf{v} = \langle -2, 5 \rangle$$
 b) $\mathbf{u} = \langle 2, 1 \rangle, \mathbf{v} = \langle -1, -3 \rangle$

Ex4) Prove that the vectors $\mathbf{u} = \langle 2, 3 \rangle$ and $\mathbf{v} = \langle -6, 4 \rangle$ are orthogonal.

Projection of u onto v ------ If **u** and **v** are nonzero vectors, the projection of **u** onto **v** is $\text{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}$

Ex5) Find the vector projection of $\mathbf{u} = \langle 6, 2 \rangle$ onto $\mathbf{v} = \langle 5, -5 \rangle$. Then write \mathbf{u} as the sum of two orthogonal vectors, one of which is $\text{proj}_{\mathbf{v}}\mathbf{u}$.

NOW YOU TRY ③

6) Find the vector projection of $\mathbf{u} = \langle -3, 4 \rangle$ onto $\mathbf{v} = \langle 12, -5 \rangle$. Then write \mathbf{u} as the sum of two orthogonal vectors, one of which is $\text{proj}_{\mathbf{v}}\mathbf{u}$.