\qquad

Notes-(6.2) Dot Product of Vectors

Objectives: You will be able to calculate dot products, the angle between two vectors, and projections of vectors.

DEFINITION --- Dot product

The dot product or inner product of $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is $\rightarrow \quad \mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}$

Ex1) Find each dot product:
a) $\langle 3,4\rangle \cdot\langle 5,2\rangle$
b) $\langle 1,-2\rangle \cdot\langle-4,3\rangle$
c) $(2 \mathbf{i}-\mathbf{j}) \cdot(3 \mathbf{i}-5 \mathbf{j})$

Properties of the Dot product --------- Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors and let c be a scalar.

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
$(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
4. $\mathbf{0} \cdot \mathbf{u}=0$
5. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$

Ex2) Use the dot product to find the length of vector $\mathbf{u}=\langle 4,-3\rangle$

THEOREM --------- Angle Between Two Vectors $\quad \cos \theta=\frac{u \cdot v}{|u||v|} \quad$ and $\quad \theta=\cos ^{-1}\left(\frac{u \cdot v}{|u||v|}\right)$

Ex3) Find the angle between two vectors $\mathbf{u} \& \mathbf{v}$.
a) $\mathbf{u}=\langle 2,3\rangle, \mathbf{v}=\langle-2,5\rangle$
b) $\mathbf{u}=\langle 2,1\rangle, \mathbf{v}=\langle-1,-3\rangle$

Ex4) Prove that the vectors $\mathbf{u}=\langle 2,3\rangle$ and $\mathbf{v}=\langle-6,4\rangle$ are orthogonal.

Projection of \mathbf{u} onto \mathbf{v}------. If \mathbf{u} and \mathbf{v} are nonzero vectors, the projection of \mathbf{u} onto \mathbf{v} is $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}$

Ex5) Find the vector projection of $\mathbf{u}=\langle 6,2\rangle$ onto $\mathbf{v}=\langle 5,-5\rangle$. Then write \mathbf{u} as the sum of two orthogonal vectors, one of which is $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

NOW YOU TRY :

6) Find the vector projection of $\mathbf{u}=\langle-3,4\rangle$ onto $\mathbf{v}=\langle 12,-5\rangle$. Then write \mathbf{u} as the sum of two orthogonal vectors, one of which is $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
