Lesson 9 Algebra and Functions
A Practice Understanding Task
Consider the equation $x-1=\sqrt{2(x+3)}$.
This equation is made up of a linear function, $f(x)=x-1$, and a square root function, $g(x)=\sqrt{2(x+3)}$.

Image Source: https://en.wikipedia.org/wiki/Geometry

1. Find the domain and range of each function and then graph both functions on the same coordinate plane.
$f(x)=x-1$
Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$

$$
g(x)=\sqrt{2(x+3)}
$$

2. Algebraically solve the equation $(x-1)^{2}=(\sqrt{2(x+3)})^{2}$

$$
\begin{aligned}
& x^{2}-2 x+1=2(x+3) \\
& x^{2}-2 x+1=2 x+6 \\
& x^{2}-4 x-5=0 \\
& (x-5)(x+1)=0 \\
& x=5 \quad x=-1
\end{aligned}
$$

Check:

$$
\begin{aligned}
& 5-1=\sqrt{2(5+3)} \\
& 4=\sqrt{16} \\
& 4=4 \\
& \hline-1-1=\sqrt{2(-1+3)} \\
&-2=\sqrt{4} \\
&-2=20 \text { extraneous } \\
&
\end{aligned}
$$

3. Are the solutions elements of the domain in both the linear and square root functions?
$5 \&-1$ are elements in the
domain of both functions.

Developed by CHCCS and WCPSS
4. Substitute the solutions back into the functions to see if the outputs are elements in the range of each function.

6. If the square root function was reflected over the x-axis, so that it's equation was

$$
h(x)=-\sqrt{2(x+3)}, \text { what would be the solution to the equation } x-1=-\sqrt{2(x+3)} ?
$$

$(-1,-2)$ would be the solution

Solve the following equations algebraically. Be sure to check for extraneous solutions.
7) $\frac{2}{x}=3 x+5$
$2=3 x^{2}+5 x$
8) $2 x+3=\frac{5}{x}$
9) $\frac{6}{x}=9-3 x$
$2 x^{2}+3 x=5$
$6=9 x-3 x^{2}$
$0=3 x^{2}+5 x-2$
$2 x^{2}+3 x-5=0$
$0=(3 x-1)(x+2)$
$x=\frac{1}{3} \quad x=-2$
$(2 x+5)(x-1)=0$
$x=-\frac{5}{2} x=1$
$3 x^{2}-9 x+6=0$
$x^{2}-3 x+2=0$
$(x-1)(x-2)=0$

$\frac{2}{\left(\frac{1}{3}\right)}=3\left(\frac{1}{3}\right)+5$	$\frac{2}{(-2)}=3(-2)+5$
$6=1+5$	$-1=-6+5$
$6=6$	$\checkmark-1=-1$

$$
\begin{array}{rl|c}
\hline 2\left(-\frac{5}{2}\right)+3=\frac{5}{\left(-\frac{5}{2}\right)} & 2(1)+3=\frac{5}{(1)} \\
-5+3=5 \cdot-\frac{2}{5} & 2+3=5 \\
-2=-2 v & 5=5
\end{array}
$$

$$
\begin{array}{l|l}
x=1 & x=2 \\
\begin{array}{l|l}
x \\
(1) & =9-3(1) \\
6=9-3 & \frac{6}{(2)}=9-3(2) \\
6=62 & 3=3 \mathrm{~V}
\end{array}
\end{array}
$$

NC Math 2 Unit 6 Square Root and Inverse Variation Functions
10) $4 x-7=\frac{2}{x}$
$4 x^{2}-7 x=2$
$4 x^{2}-7 x-2=0$

$(4 x+1)(x-2)=0$ | $x=-\frac{1}{4}$ | $x=2$ |
| :---: | :---: |
| $4\left(-\frac{1}{4}\right)-7=\frac{2}{(4)}$ | $4(2)-7=\frac{2}{(2)}$ |
| $-1-7=-8$ | $8-7=1$ |
| $-8=-81$ | |
| $1=15$ | |

12) $(4 x-2)^{2}=(\sqrt{x+3})^{2}$

13) $(\sqrt{4 x})^{2}=(-2 x+4)^{2}$
$4 x=4 x^{2}-16 x+16$
$\begin{gathered}0=4 x^{2}-20 x+16 \\ 0=x^{2}-5 x+4 \\ 0=(x-4)(x-1) \\ x=4 \\ \text { extraneous }\end{gathered} \left\lvert\, \begin{array}{ll}x=1 \\ \sqrt{4(4)}=-2(4)+4 & \sqrt{4(1)}=-2(1)+4 \\ 4=-8+4 & \sqrt{4}=-2+4 \\ 4=-4 & 2=2\end{array}\right.$
14) $0.5 x-8=2-2 \sqrt{x+1}$
$\begin{aligned} .5 x-10 & =-2 \sqrt{x+1} \\ (x-20)^{2} & =(-4 \sqrt{x+1})^{2}\end{aligned}$
$x^{2}-40 x+400=16(x+1)$
$x^{2}-40 x+400=16 x+16$
$x^{2}-56 x+384=0$
15) $(x-7)^{2}=(-1 \sqrt{4 x-8})^{2}$
$x^{2}-14 x+49=4 x-8$
$x^{2}-18 x+57=0$

