Math 2

Inverse Trig Functions

Using a Calculator to Find the Angle Measure

Use the $2^{\text {nd }}$ key on the calculator to get SIN^{-1}. This is interpreted as "find the angle whose Sine is".
Example 1: Find the measure of the angle whose Sin is $.5 \operatorname{Sin} \angle B=.5 \longrightarrow \angle B=\sin ^{-1}(.5)=$
Using a graphing calculator, press the following: Using most scientific calculators, press the following:

$$
\begin{array}{lllllll}
2^{\text {nd }} & \text { SIN } & .5 & \text { ENTER } & .5 & \left(2^{\text {nd }}\right. \text { or INV) } & \text { SIN }
\end{array}
$$

Example 2: Now find the measure of the angle whose Cosine is . 5

$$
\cos \angle \mathrm{A}=.5 \quad \longrightarrow \quad \angle \mathrm{~A}=\cos ^{-1}(.5)=
$$

Find the following angle measures to the nearest degree.

1. $\mathrm{m} \angle \mathrm{M}=$
2. $\mathrm{m} \angle \mathrm{P}=$

3. Find the $\mathrm{m} \angle \mathrm{L}$ (to the nearest degree).

4. Find the value of " x " to the nearest degree.
a)

b)

c)

5. Find the value of "w" to the nearest tenth.
a)

Summary:

What's an acronym that can help you remember the trigonometric ratios? \qquad
Fill in the ratios using the words opposite, adjacent, and hypotenuse.
$\sin (x)=$ \qquad

$$
\cos (x)=
$$

\qquad
$\tan (\mathrm{x})=$

We use trigonometric functions (\sin , \cos , \tan) to find missing \qquad of right triangles.

We use inverse trigonometric functions $\left(\sin ^{-1}, \cos ^{-1}, \tan ^{-1}\right)$ to find missing \qquad of right triangles.

