Pre-Calculus

Notes 7.5

PARABOLAS

Let F be a point in the plane and d be a line not containing F. A parabola is the set of all points equidistant from F and d. The point F is called the focus of the parabola abd the line d is called the directrix of the parabola.

	Vertical	Horizontal
Standard Form of Parabola	$(x-h)^{2}=4 p(y-k)$	$(y-k)^{2}=4 p(x-h)$
Vertex Form	$(y-k)=\frac{1}{4 p}(x-h)^{2}$	$(x-h)=\frac{1}{4 p}(y-k)^{2}$
vertex	(h, k)	(h, k)
Axis of Symmetry	$x=h$	$y=k$
$p>0$	opens up	opens right
$p<0$	opens down	opens left
Focus	$(h, k \pm p)$	$(h \pm p, k)$
directrix	$y=k \pm p$	$(h \pm p, k)$
Focal Length	p	p
Focal Width	$\|4 p\|$	$\|4 p\|$

Ex 1) Write each function in standard form of a quadratic by completing the square method.
a) $y=x^{2}-6 x+3$
b) $y=-x^{2}-8 x-11$
c) $y=-2 x^{2}-8 x-1$
d) $y=3 x^{2}-9 x+6$

Ex 2) Find the vertex, focus and directrix of the parabola $y=-\frac{1}{2} x^{2}$

Ex 3) Find the equation of the parabola with the focus at $(-2,0)$ and the directrix is $x=2$.

Ex 4) Find the equation of the parabola with the focus at $(5,4)$ and the vertex at $(3,4)$.

Ex 5) Put the equation $y^{2}-6 x+2 y+13=0$ in vertex form. Find the vertex, focus and directrix of the parabola. Sketch the graph.

Ex 6) Find the equation in standard form and vertex form of a porabola:
a) $F(-4,0)$ and directrix $x=4$.
b) Opens upward, $V(0,0)$, and focal width of 3.
c) $F(-5,3)$ and $V(-5,6)$.
d) $3 x^{2}-6 x-6 y+10=0$

Ex 7) Graph: $x+1=4 y-y^{2}$

horizontal/vertical \qquad
c \qquad
vertex \qquad
focus \qquad directrix equation \qquad

Ex 8) Graph: $x^{2}-8 x-y+18=0$

horizontal/vertical \qquad
c \qquad vertex \qquad
focus \qquad
directrix equation \qquad

Ex 9) Write an equation for the parabola with a focus at $(-1,7)$, the length from the focus to the vertex is 2 units, and has a minimum.

