# **Proportions in Similar Triangles**



#### Practice Theorems 6.4-6.5:

1.) In the diagram,  $\overline{QS} \parallel \overline{UT}$ , RS = 4, ST = 6, and QU = 9. What is the length of  $\overline{RQ}$ ?



•••••••••••••••••••••••••

2.) Determine whether  $\overline{PS} \parallel \overline{QR}$ 



#### On your Own:

a. Find the length of  $\overline{YZ}$ .





### Side Splitter Proportionality

If three parallel lines intersect two transversals, then they divide the transversals proportionally.



If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.



#### **Practice with Proportionality:**

3.) Find the length of  $\overline{AB}$ .

·····



4.) Find the length of  $\overline{AB}$ .

Use the diagrams to find the value of each variable.









## **Mixed Practice**

**#9-13**: Use the diagram to find the value of each variable.





**#14-17:** Determine the length of each segment.

14.) <del>AG</del> 15.) <del>FC</del>

16.) ED 17.) AE

