Proportions in Similar Triangles

Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally.

If $\overline{T U} \| \overline{Q S}$, then $\frac{R T}{T Q}=\frac{R U}{U S}$.

Converse of the Triangle Proportionality Theorem

If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

If $\frac{R T}{T Q}=\frac{R U}{U S^{\prime}}$ then $\overline{T U} \| \overline{Q S}$.

Practice Theorems 6.4-6.5:

1.) In the diagram, $\overline{Q S} \| \overline{U T}, \mathrm{RS}=4, \mathrm{ST}=6$, and $\mathrm{QU}=9$. What is the length of $\overline{\mathrm{RQ}}$?

2.) Determine whether $\overline{P S} \| \overline{Q R}$

On your Own:

a. Find the length of $\overline{Y Z}$.
b. Determine whether $\overline{P S} \| \overline{Q R}$.

Side Splitter Proportionality

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

$$
\frac{u w}{W Y}=\frac{v X}{X Z}
$$

Angle Bisector Proportionality

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

$\frac{A D}{D B}=\frac{C A}{C B}$

Practice with Proportionality:

3.) Find the length of $\overline{\mathrm{AB}}$.

4.) Find the length of $\overline{\mathrm{AB}}$.

Use the diagrams to find the value of each variable.

6.

8.

Mixed Practice
\#9-13: Use the diagram to find the value of each variable.
9.) B

10.)

11.)

12.)

13.)

\#14-17: Determine the length of each segment.
14.) $\overline{A G}$
15.) $\overline{\mathrm{FC}}$
16.) $\overline{E D}$
17.) $\overline{\mathrm{AE}}$

