Name: ________ Notes—(8.1) Polar Coordinates/Equations

A **polar coordinate system** is a plane with a point *O*, the **pole**, and a ray from *standard position*, 0, the **polar axis**. Each point *P* in the plane is assigned as **polar coordinates** as follows: r is the **directed distance** from *O* to *P* and θ is the **directed angle** whose initial side is on the polar axis and whose terminal side is on the line *OP*.

As in trigonometry, we measure θ as positive when moving counterclockwise and negative when moving clockwise. If r > 0, then P is on the terminal side of θ . If r < 0, then P is on the terminal side of $\theta + \pi$. We can use radian or degree measure for the angle θ .

EXAMPLE 1 Plotting Points in the Polar Coordinate System

Plot the points with the given polar coordinates.

(a)
$$P(2, \pi/3)$$
 (b) $Q(-1, 3\pi/4)$ (c) $R(3, -45^{\circ})$

Coordinate Conversion Equations

Let the point *P* have polar coordinates (r, θ) and rectangular coordinates (x, y). Then

$$x = r \cos \theta,$$
 $r^2 = x^2 + y^2,$
 $y = r \sin \theta,$ $\tan \theta = \frac{y}{x}.$

EXAMPLE 2 Converting from Polar to Rectangular Coordinates

Find the rectangular coordinates of the points with the given polar coordinates.

(a) *P*(3, 5π/6)

(b) Q(2, −200°)

EXAMPLE 3 Converting from Rectangular to Polar Coordinates

Find two polar coordinate pairs for the points with given rectangular coordinates.

(a) P(-1, 1) (b) Q(-3, 0) (c) R(-4, -5)

Converting from Polar Form to Rectangular Form

EXAMPLE 4 Convert each of the following to rectangular form and then graph.

a) $\theta = \frac{\pi}{4}$ b) $r = 5 \sec \theta$

c)
$$r = \cos \theta$$
 d) $r = 3$

EXAMPLE 5 Convert each of the following to rectangular form and identify the conic..

a)
$$r = \frac{4}{3-2\cos\theta}$$
 b) $r = \frac{1}{1+\sin\theta}$ c) $r = \sin\theta - \cos\theta$

EXAMPLE 6 Convert each of the following to polar form.

a)
$$x^2 + y^2 = 5$$

b) $(x-2)^2 + y^2 = 4$

c)
$$(x+4)^2 + (y-1)^2 = 17$$