\qquad
Notes-(8.1) Polar Coordinates/Equations

Rectangular Grid (Cartesian Coordinates)

Polar Grid
(Polar Coordinates)

A polar coordinate system is a plane with a point O, the pole, and a ray from standard position, 0 , the polar axis. Each point P in the plane is assigned as polar coordinates as follows: r is the directed distance from O to P and θ is the directed angle whose initial side is on the polar axis and whose terminal side is on the line $O P$.

As in trigonometry, we measure θ as positive when moving counterclockwise and negative when moving clockwise. If $r>0$, then P is on the terminal side of θ. If $r<0$, then P is on the terminal side of $\theta+\pi$. We can use radian or degree measure for the angle θ.

EXAMPLE 1 Plotting Points in the Polar Coordinate System

Plot the points with the given polar coordinates.
(a) $P(2, \pi / 3)$
(b) $Q(-1,3 \pi / 4)$
(c) $R\left(3,-45^{\circ}\right)$

Coordinate Conversion Equations

Let the point P have polar coordinates (r, θ) and rectangular coordinates (x, y). Then

$$
\begin{array}{lr}
x=r \cos \theta, & r^{2}=x^{2}+y^{2}, \\
y=r \sin \theta, & \tan \theta=\frac{y}{x} .
\end{array}
$$

EXAMPLE 2 Converting from Polar to Rectangular Coordinates
Find the rectangular coordinates of the points with the given polar coordinates.
(a) $P(3,5 \pi / 6)$
(b) $Q\left(2,-200^{\circ}\right)$

EXAMPLE 3 Converting from Rectangular to Polar Coordinates

Find two polar coordinate pairs for the points with given rectangular coordinates.
(a) $P(-1,1)$
(b) $Q(-3,0)$
(c) $R(-4,-5)$

Converting from Polar Form to Rectangular Form

EXAMPLE 4 Convert each of the following to rectangular form and then graph.
a) $\quad \theta=\frac{\pi}{4}$
b) $r=5 \sec \theta$
c) $r=\cos \theta$
d) $r=3$

EXAMPLE 5 Convert each of the following to rectangular form and identify the conic..
a) $r=\frac{4}{3-2 \cos \theta}$
b) $r=\frac{1}{1+\sin \theta}$
c) $r=\sin \theta-\cos \theta$

EXAMPLE 6 Convert each of the following to polar form.
a) $x^{2}+y^{2}=5$
b) $(x-2)^{2}+y^{2}=4$
c) $(x+4)^{2}+(y-1)^{2}=17$

