Classifying Polar Graphs

Just as was true with rectangular graphs, there are graphs in polar form that occur all the time and students should be able to recognize them by their equations.

Rose curves are in the form $r = a \cdot \sin(n\theta)$ or $r = a \cdot \cos(n\theta)$. The maximum diameter of a petal is controlled by *a*. If *n* is even, the rose curve will have 2n petals. If *n* is odd, the rose curve will have *n* petals. Interesting patters can be formed if *n* is a decimal and the curve is viewed with θ starting at 0 and going out to very large numbers.

Match the polar equations with their graphs below.

- <u>1) $r = 3 \cos\theta$ </u> ____5) $r = 3 + 1.5 \sin\theta$ <u>9</u>) $r = 2 - 3\cos\theta$
- A.

E.

<u>2</u>) $r = 2 - 2\sin\theta$

_6) $r = 3.5\cos(2\theta)$

<u> 11</u>) $r = -4 \cos\theta$

C.

G.

$$\underline{\quad 10) r = 3\cos}$$