Notes 9.1 - Introduction to Sequences
Definition: A \qquad is an ordered progression of numbers. This progression can be (meaning it ends), for example $\{3,6,9,12, \ldots, 21\}$. Or, it can be \qquad , for example $\{3,6,9,12, \ldots\}$.

Notation: a_{n} is used to denote a term in a sequence. The a alone actually has \qquad , however the n has a very significant meaning. It indicates the \qquad of the term in the sequence being referred to.

There are 2 ways to define these sequences

\qquad \& \qquad
The explicit definition is like a formula.
Ex1) Find the first four terms of the given sequence.
a) $a_{n}=2 n+3$
b) $a_{n}=3 \cdot 2^{n}$
c) $\quad a_{n}=n+\frac{1}{n}$
$\overline{a_{1}}, \overline{a_{2}}, \overline{a_{3}}, \overline{a_{4}}$
$\overline{a_{1}}, \overline{a_{2}}, \overline{a_{3}}, \overline{a_{4}}$
$\overline{a_{1}}, \overline{a_{2}}, \xrightarrow[a_{3}]{ }, \overline{a_{4}}$

NOW YOU TRY :) Find the first four terms of the given sequence.
a) $a_{n}=n^{3}+1$
b) $a_{n}=3-7 n$
c) $\quad a_{n}=(-2)^{n}$

$\overline{a_{1}},{ }_{a_{2}}, \xrightarrow[a_{3}]{ }, \overline{a_{4}}$

The recursive definition has 2 parts:
(1) a term to begin with
(2) a symbolic description of how the successive terms are related.

Ex2) Find the indicated terms of the given sequence.
a) $a_{1}=6, a_{n}=4+a_{n-1}$
b) $a_{1}=9, a_{n}=\frac{1}{3} \cdot a_{n-1}$
c) $a_{1}=1, a_{2}=2, a_{n}=a_{n-1}+a_{n-2}$
$\overline{a_{2}}, \overline{a_{3}}, \overline{a_{4}}, \overline{a_{5}}$
$\overline{a_{2}}, \overline{a_{3}}, \overline{a_{4}}, \overline{a_{5}}$
$\underset{a_{2}}{ }, \longrightarrow_{a_{3}}, \xrightarrow[a_{4}]{ }, \xrightarrow[a_{5}]{ }$

NOW YOU TRY ;) Find the indicated terms of the given sequence.
a) $a_{1}=4, a_{n}=5 \cdot a_{n-1}+2$
b) $a_{1}=1, a_{n}=\left(-\frac{1}{3}\right)^{n} \cdot a_{n-1}$
c) $a_{1}=1, a_{2}=2, a_{n}=a_{n-1} \cdot a_{n-2}$
$\overline{a_{2}}, \overline{a_{3}}, \overline{a_{4}}, \overline{a_{5}}$
$\overline{a_{2}},{ }_{a_{3}}, \frac{}{a_{4}}, \overline{a_{5}}$
$\overline{a_{2}},{ }_{a_{3}}, \frac{}{a_{4}}, \frac{}{a_{5}}$

Although it is possible to work with many different types of sequences, there are 2 that are most common.
(where there is a common difference between each term) and \qquad (where there is a common ration between each pair of terms).

ARITHMETIC:

$a_{n}=a_{1}+d(n-1)$, were d is the difference between each term (called the common difference)
Ex3) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the nth term of the sequence in terms of n.
a) $17,21,25,29, \ldots$
b) $8,12,18,27, \ldots$
c) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$
d) $11,101,1001,10001, \ldots$
type: \qquad type: \qquad type: \qquad type: \qquad
\qquad
$a_{n}=$ \qquad $a_{n}=$ \qquad
$a_{n}=$ \qquad

NOW YOU TRY © : State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the nth term of the sequence in terms of n.
a) $100,-50,25,-12.5, \ldots$
b) $1,4,9,16, \ldots$
c) $\frac{2}{1}, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \ldots$
d) $2 \mathrm{a}-2 \mathrm{~b}, 3 \mathrm{a}-\mathrm{b}, 4 \mathrm{a}, 5 \mathrm{a}+\mathrm{b}, \ldots$
type: \qquad
\qquad type: \qquad type: \qquad
$a_{n}=$ \qquad

$$
a_{n}=
$$

$a_{n}=$ \qquad
$a_{n}=$ \qquad

Ex4) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the nth term of the sequence in terms of n.
a) $a_{1}=8, a_{n}=\frac{1}{2} \cdot a_{n-1}$
b) $a_{1}=6, a_{n}=a_{n-1}+10$
c) $a_{1}=\frac{1}{2}, a_{n}=\frac{n}{n+1}\left(a_{n-1}+1\right)$
type: \qquad type: \qquad type: \qquad
$a_{n}=$ \qquad
$a_{n}=$ \qquad
$a_{n}=$ \qquad

NOW YOU TRY :-) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the nth term of the sequence in terms of n.
a) $a_{1}=1, a_{n}=a_{n-1}+2 n-1$
b) $a_{1}=3, a_{n}=-2 \cdot a_{n-1}$
c) $2^{\frac{2}{3}}, 2^{\frac{5}{3}}, 2^{\frac{8}{3}}, \ldots$
type: \qquad type: \qquad type: \qquad
$a_{n}=$ \qquad

$$
a_{n}=
$$

Ex5) Find the indicated term of each arithmetic sequence:
a) $a_{1}=15, a_{2}=21, a_{20}=$?
b) $a_{1}=15, a_{2}=21, a_{20}=$?

Ex6) How many terms are in the finite arithmetic sequence
a) $18,24, \ldots, 336$
b) $178,170, \ldots, 2$

Ex7) Find the number of multiples of ...
a) 7 between 30 , and 300 .
b) 6 between 28 , and 280 .

Ex 8) Find the
a) $100^{\text {th }}$ term of the sequence
b) $120^{\text {th }}$ term of the sequence
$15,12.3,9.6,6.9 \ldots$ $-4,2,8,14 \ldots$

Ex9) Find the explicit definition for the sequences below:
a) $\frac{2}{5}, \frac{11}{15}, \frac{16}{15}, \frac{7}{5}, \cdots$
b) $\frac{7}{6}, \frac{5}{3}, \frac{13}{6}, \frac{8}{3}, \ldots$
c) $-10,-6,-2,2, \ldots$
d) $-10.3,-6.5,-2.7,1.1, \ldots$

Ex10)

a) Which term in the sequence $1,4,7, \ldots$ is 88 ? b) Which term in the sequence $1,5,9, \ldots$ is 181 ?

