Pre-Calc

 a_{2}

 $a_3 \quad a_4 \quad a_5$

Notes 9.1 – Introduction to Sequences

Definition: A _______ is an ordered progression of numbers. This progression can be (meaning it ends), for example {3, 6, 9, 12, ..., 21}. Or, it can be ______, for example $\{3, 6, 9, 12, \ldots\}$. **Notation:** *a*_n is used to denote a term in a sequence. The *a* alone actually has _____ however the n has a very significant meaning. It indicates the ______ of the term in the sequence being referred to. There are 2 ways to define these sequences _____ & _____ The **explicit definition** is like a formula. **Ex1**) Find the first four terms of the given sequence. c) $a_n = n + \frac{1}{n}$ $a_n = 2n + 3$ $a_n = 3 \cdot 2^n$ b) a) $a_1 \qquad a_2 \qquad a_3 \qquad a_4$ $a_1 \quad a_2 \quad a_3 \quad a_4$ $a_1 \quad a_2 \quad a_3 \quad a_4$ **NOW YOU TRY** ⁽²⁾ Find the first four terms of the given sequence. **a**) $a_n = n^3 + 1$ b) $a_n = 3 - 7n$ c) $a_n = (-2)^n$ a_1 , a_2 , a_3 , a_4 a_1 , a_2 , a_3 , a_4 $a_1 \quad a_2 \quad a_3 \quad a_4$ The **recursive definition** has 2 parts: (1) a term to begin with (2) a symbolic description of how the successive terms are related. Ex2) Find the indicated terms of the given sequence. **b**) $a_1 = 9$, $a_n = \frac{1}{3} \cdot a_{n-1}$ **c**) $a_1 = 1, a_2 = 2, a_n = a_{n-1} + a_{n-2}$ **a**) $a_1 = 6, a_n = 4 + a_{n-1}$ a_2 , a_3 , a_4 , a_5 a_2 , a_3 , a_4 , a_5 $a_2 \quad a_3 \quad a_4$ a_5 **NOW YOU TRY** ⁽²⁾ Find the indicated terms of the given sequence. **a**) $a_1 = 4$, $a_n = 5 \cdot a_{n-1} + 2$ **b**) $a_1 = 1$, $a_n = \left(-\frac{1}{3}\right)^n \cdot a_{n-1}$ **c**) $a_1 = 1, a_2 = 2, a_n = a_{n-1} \cdot a_{n-2}$ $a_2 \quad a_3 \quad a_4$ a_2 a_3 a_4

 a_5

 a_5

Although it is possible to work with many different types of sequences, there are 2 that are most common.

_____ (where there is a common difference between each term) and ______ (where there is a common ration between each pair of terms).

ARITHMETIC:

 $a_n = a_1 + d(n-1)$, were d is the difference between each term (called the common difference)

Ex3) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the *n*th term of the sequence in terms of *n*.

a) 17, 21, 25, 29, ... **b)** 8, 12, 18, 27, ... **c)** $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, ...$ **d)** 11, 101, 1001, 10001, ... type: _____ type: _____ type: _____ type: _____ $a_n = ___$ $a_n = ___$ $a_n = __$ $a_n = _$ _____ NOW YOU TRY ③ State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the *n*th term of the sequence in terms of *n*. c) $\frac{2}{1}, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \dots$ d) $2a - 2b, 3a - b, 4a, 5a + b, \dots$ **a**) 100, -50, 25, -12.5,... **b**) 1, 4, 9, 16, ...

type: _____ type: _____ type: _____ type: _____ $a_n = ___$ $a_n =$ _____ $a_n =$ _____ $a_n =$ _____

Ex4) State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the *n*th term of the sequence in terms of *n*.

c) $a_1 = \frac{1}{2}, a_n = \frac{n}{n+1}(a_{n-1}+1)$ **a**) $a_1 = 8, a_n = \frac{1}{2} \cdot a_{n-1}$ **b**) $a_1 = 6, a_n = a_{n-1} + 10$ type: _____ type: _____ type: _____ $a_n = ___$ $a_n \equiv$ $a_n =$

 $\frac{2}{2}$ $\frac{5}{2}$ $\frac{8}{2}$

NOW YOU TRY ③ State whether each sequence is arithmetic, geometric, or neither. Then, find an explicit formula for the *n*th term of the sequence in terms of *n*.

a) $a_1 = 1, a_n = a_{n-1} + 2n - 1$	b) $a_1 = 3, a_n = -2 \cdot a_{n-1}$	c) $2^{\frac{2}{3}}, 2^{\frac{2}{3}}, 2^{\frac{3}{3}}, \dots$
type:	type:	type:
$a_n = $	$a_n = $	$a_n =$

Ex5) Find the indicated term of each arithmetic sequence:

a) $a_1 = 15, a_2 = 21, a_{20} = ?$ **b**) $a_1 = 15, a_2 = 21, a_{20} = ?$

Ex6) How many terms are in the finite arithmetic sequence **a**) 18, 24, ..., 336 **b**) 178, 170, ..., 2

Ex7) Find the number of multiples of ...a) 7 between 30, and 300.

b) 6 between 28, and 280.

Ex 8) Find the **a**) 100th term of the sequence 15, 12.3, 9.6, 6.9....

b) 120th term of the sequence -4, 2, 8, 14

Ex9) Find the explicit definition for the sequences below:

a) $\frac{2}{5}, \frac{11}{15}, \frac{16}{15}, \frac{7}{5}, \cdots$ **b**) $\frac{7}{6}, \frac{5}{3}, \frac{13}{6}, \frac{8}{3}, \cdots$ **c**) -10, -6, -2, 2, ... **d**) -10.3, -6.5, -2.7, 1.1, ...

Ex10)

- a) Which term in the sequence 1, 4, 7,....is 88?
- **b**) Which term in the sequence 1, 5, 9,....is 181?