Notes 9.2 – Geometric Sequences

Geometric Sequence: $a_n = a_1(r)^{n-1}$, where a_n is the *n*th term, *r* is the common ratio, & a_1 is the 1st term.

Ex1) Write an explicit representation of the pattern & state if it is arithmetic, geometric or neither. Then find the 15th term.

a) $\frac{1}{243}$, $\frac{1}{81}$, $\frac{1}{27}$, $\frac{1}{9}$,... **b**) 53, 47, 41, 35, ... **c**) 2, 3, 5, 9, 17, 33, 65, ...

Ex2) Given that $a_2 = 3 \& a_5 = 24$ write an explicit formula if the sequence is a) arithmetic & b) geometric. Then find the values of a_3 , and a_4 in each situation. a)

 $a_n =$ _____

b)

 $a_n =$ _____

 $a_n = _$

 $a_3 = ___ a_4 = ___$ (These are called the Arithmetic means $a_2 \& a_5$ between)

 $a_n =$ _____

 $a_3 = _ a_4 = _$ (These are called the Geometric means between $a_2 \& a_5$)

 $a_n =$ _____

Ex 3) Find the geometric means in the sequence:

a) 1, ____, ___, −27

b) 6, ____, ____, 384

Now You Try ©:

c) _____, ____, 6, _____, $\frac{27}{2}$

d) ¹/₉, ____, 1, ____, ____

Ex4) Find the arithmetic means in the sequence:

a) 5, ____, ___, -3

b) -7, ____, ___, 1

c) _____, ____, 3, _____, -11

d) _____, 10, _____, ____, 4, _____

Ex5) Complete the following statement:

a) 354, 294 is the _____th term of the geometric sequence: 2, 6, 18, ...

b) 462 is the $__{th}$ term of the arithmetic sequence: -2, 6, 14,...

Now you try (a) a) 0.0625 is the _____th term of the geometric sequence: 8, 4, 2, ...

b) 67 is the _____th term of the arithmetic sequence: $8, 8\frac{1}{2}, 9, \dots$