

General Sequences

Write the first six terms of the sequence.

1.
$$a_n = \frac{n+4}{n}$$
 2. $a_n = \frac{n^2}{n+1}$ **3.** $a_n = (n+1)^3$

Write the next term in the sequence. Then write a rule for the *n*th term.

4. $\frac{1}{2}$, 1, $\frac{3}{2}$, 2,	5. 1, 4, 7, 10,	6. 4, 3, 2, 1,
7. 5, 7, 9, 11,	8. 3, 7, 11, 15,	9. 4, 9, 16, 25,

Arithmetic Sequences

Write a rule for the *n*th term of the arithmetic sequence. Then find a_{30} .

1. 1, -3, -7, -11, -15,	2. 7, 2, -3, -8, -13,	3. 2.5, 2.2, 1.9, 1.6,
4. 5, 8.4, 11.8, 15.2,	5. $\frac{9}{4}, \frac{5}{2}, \frac{11}{4}, 3, \frac{13}{4}, \ldots$	6. $-\frac{5}{3}, -1, -\frac{1}{3}, \frac{1}{3}, 1$

Write a rule for the *n*th term of the arithmetic sequence.

7. $d = 0.2, a_1 = 16$	8. $d = \frac{2}{3}, a_1 = 12$	9. $d = -4, a_{10} = 2$
10. $a_6 = 27.2, a_{13} = 44$	11. $a_{15} = -19, a_{24} = -16$	12. $a_8 = -24.8, a_{18} = -50.8$

Geometric Sequences

Find the common ratio of the geometric sequence.

1. 1, -3, 9, -27,	2. $-2, \frac{1}{2}, -\frac{1}{8}, \frac{1}{32}, \ldots$	3. 7, $\frac{21}{4}$, $\frac{63}{16}$, $\frac{189}{64}$,
--------------------------	---	--

Write a rule for the *n*th term of the geometric sequence. Then find a_{s} .

4. $-3, \frac{3}{4}, -\frac{3}{16}, \frac{3}{64}, \ldots$	5. 2, -0.8, 0.32, -0.128,	6. 7, 28, 112, 448,
--	----------------------------------	----------------------------

Write a rule for the *n*th term of the geometric sequence.

7.
$$a_1 = 5, r = 1.1$$
 8. $a_3 = -64, a_7 = -\frac{1}{4}$ **9.** $a_8 = \frac{1}{9}, a_{15} = 243$