\qquad

Notes 9.3 - Sigma Notation and Arithmetic Series

DEFINITION: A Series is the sum of the terms of a sequence.
Sigma Notation or (Summation Notation) This symbol means "Add" \rightarrow It's called "Sigma" $\sum_{n=1}^{k} a_{n}$ The variable below sigma (n in this case) is called the "index" The number below sigma (1 in this case) is which term begins the series, called the "lower bound" The number above sigma (k in this case) is which term ends the series, called the "upper bound" The expression to the right of sigma (a_{n} in this case) is the explicit formula used to generate the terms of the series.

Ex 1) Using summation notation to find the sum of a finite sequence
Problem
Work
Answer
(a) $\sum_{n=1}^{5} n^{2}$

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+4^{2}+5^{2} \tag{55}
\end{equation*}
$$

(b) $\sum_{n=3}^{5} \frac{1}{n}$
(c) $\sum_{n=5}^{10} n$
(d) $\sum_{n=1}^{6} 2$

Ex2) Write the following sums using sigma notation:

a) $1+4+9+16+25+36+49+64+81$
b) $2+4+6+8+10+12$
c) $625+125+25+\cdots$

Now You Try ()
a) $6+2-2-6-10-14-18-22$
b) $729+243+81+27+9+3$
c) $8+27+64+125$

FINITE ARITHMETIC SERIES

$$
S_{n}=\sum_{k=1}^{n} a_{k}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \text { Gauss } \rightarrow 1+2+3+4+\cdots+100
$$

a) $1+3+5+7+\cdots+49$
b) $3+7+11+15+19+23+27$
c) A corner section of a stadium has 8 seats along the front row. Each successive row has 2 more seats than the row preceding it. If the top row has 24 seats how many seats are in the entire section?

