Pre-Calculus

Name: _____

Notes—(6.1) Vectors in a Plane

- Quantities that have both ______ & _____ are represented by vectors.
- Vectors are defined by <u>magnitude</u> and <u>direction</u>. (NOT by <u>location</u>)

• Lowercase **boldface** letters such as **v**, **u** and **w** are used to represent vectors.

or

- Two vectors are equal if their corresponding directed line segments have the same *length* & *direction*.
- Two vectors are equal if and only if they have the same *component form*.

Component Form of Vector:

"Component form" means we have an initial point at (0,0) and terminal point (v_1, v_2)

• To find component form of a vector with initial point (x_1, y_1) and terminal point (x_2, y_2) :

$$\langle v_1, v_2 \rangle = \langle x_2 - x_1, y_2 - y_1 \rangle$$

• v_1 is the <u>horizontal</u> component • v_2 is the <u>vertical</u> component

$$v_1 = x_2 - x_1$$

 $v_2 = y_2 - y_1$

- Ex 1) Let u be the vector represented by the directed line segment from R = (-4, 2) to S = (-1, 6), & v the vector from O(0, 0) to P = (3, 4). Prove that u = v.
- Ex 2) Let \boldsymbol{u} be the vector represented by the directed line segment from R = (7, -3) to S = (4, -5), & \boldsymbol{v} the vector from O(0, 0) to P = (-3, -2). Prove $\boldsymbol{u} = \boldsymbol{v}$

The <u>magnitude</u> (or length) of vector $\mathbf{v} = \overrightarrow{PQ}$ determined by $P = (x_1, y_1)$ and $Q = (x_2, y_2)$

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

<u>Note</u>: The vector $\mathbf{0} = \langle 0, 0 \rangle$, called the zero vector, has 0 length and 0 direction. Practice:

Ex 3) P=(-3,1) and Q = (-6,5) Find the component form & magnitude of vector

Ex 4) Given $u = \langle -1, 2 \rangle$ and $v = \langle 2, 5 \rangle$ find the component form each of the following vectors:

Now You Try 🕲

Ex 5) Given $u = \langle 5, -2 \rangle$ and $v = \langle 6, 4 \rangle$ find the component form each of the following vectors: a) u - v b) 5u c) 3u + (-2)v

DEFINITION --- Unit Vectors and the standard Unit Vectors

A vector <i>u</i> with length 1 is called a	to create a unit
vector \boldsymbol{u} in the direction of \boldsymbol{v} simply divide vector \boldsymbol{v} by its magnitude:	$\mathbf{u} = \frac{\mathbf{v}}{ \mathbf{v} } = \frac{1}{ \mathbf{v} }\mathbf{v}$
The two unit vectors $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$ are the standard unit vectors and can be used to write a vector as a linear combination of $\mathbf{i} \& \mathbf{j}$.	

- Ex5) Find a unit vector in the direction of $\mathbf{v} = \langle -3, 2 \rangle$, and verify that it has a length equal to 1. Then write the answer in both component form and as a linear combination of the standard unit vectors.
 - |**v**| = _____

The component form of the vector **u** a unit vector in the direction of v is _____

u written as a linear combination of the standard unit vectors *i* & *j* is _____

DEFINITION --- Direction Angle

To precisely specify the direction of a vector state its **<u>direction angle</u>** θ (made by the vector and the positive *x*-axis)

Using trigonometry, we can see the horizontal component of a vector \mathbf{v} is $(|\mathbf{v}|\cos\theta)$ and the vertical component is ($|\mathbf{v}|$ sin θ), thus:

- $\mathbf{v} = (|\mathbf{v}|\cos\theta)\mathbf{i} + (|\mathbf{v}|\sin\theta)\mathbf{j} = \langle |\mathbf{v}|\cos\theta, |\mathbf{v}|\sin\theta \rangle$
- **Ex6)** Find the components of vector **v** with **Ex7)** Find the magnitude & direction angle direction angle θ = 115° and magnitude of 6. of each vector:
 - a) u = (3, 2) b) v = (-2, -5)