Name: \qquad

Notes-(6.1) Vectors in a Plane

- Quantities that have both \qquad \& \qquad are represented by vectors.
- Vectors are defined by magnitude and direction. (NOT by location)

- Lowercase boldface letters such as \mathbf{v}, \mathbf{u} and \mathbf{w} are used to represent vectors. or
- Two vectors are equal if their corresponding directed line segments have the same length \& direction.
- Two vectors are equal if and only if they have the same component form.

Component Form of Vector:

"Component form" means we have an initial point at $(0,0)$ and terminal point $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$

- To find component form of a vector with initial point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and terminal point ($\mathrm{x}_{2}, \mathrm{y}_{2}$):

$$
\left\langle v_{1}, v_{2}\right\rangle=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle
$$

- v_{1} is the horizontal component

$$
v_{1}=x_{2}-x_{1}
$$

- \boldsymbol{v}_{2} is the vertical component

$$
v_{2}=y_{2}-y_{1}
$$

Ex 1) Let \boldsymbol{u} be the vector represented by the directed line segment from $R=(-4,2)$ to $S=(-1,6), \& \boldsymbol{v}$ the vector from $O(0,0)$ to $P=(3,4)$. Prove that $\boldsymbol{u}=\boldsymbol{v}$.

Ex 2) Let \boldsymbol{u} be the vector represented by the directed line segment from $R=(7,-3)$ to $S=(4,-5), \& \boldsymbol{v}$ the vector from $O(0,0)$ to $P=(-3,-2)$. Prove $\boldsymbol{u}=\boldsymbol{v}$

The magnitude (or length) of vector $\boldsymbol{v}=\overrightarrow{P Q}$ determined by $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Note: The vector $\mathbf{0}=\langle 0,0\rangle$, called the zero vector, has 0 length and 0 direction. Practice:

Ex 3) $P=(-3,1)$ and $Q=(-6,5)$ Find the component form \& magnitude of vector
a) $\overrightarrow{P Q}$

b) $\overrightarrow{Q P}$

DEFINITION --- Vector Addition and Scalar Multiplication

Let $\boldsymbol{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\boldsymbol{v}=\left\langle v_{1}, v_{2}\right\rangle$ be vectors and let k be a real number (scalar).
The sum (or resultant vector) of $\boldsymbol{u}+\boldsymbol{v}$ is the vector: $\quad \boldsymbol{u}+\boldsymbol{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{1}\right\rangle$
The scalar product of vector \mathbf{u} and scalar k is the vector: $\quad k \mathbf{u}=\left\langle k u_{1}, k u_{2}\right\rangle$

Ex 4) Given $\boldsymbol{u}=\langle-1,2\rangle$ and $\boldsymbol{v}=\langle 2,5\rangle$ find the component form each of the following vectors:
a) $3 \boldsymbol{u}$

b) $u+v$

c) $3 u-v$

Now You Try ()

Ex 5) Given $\boldsymbol{u}=\langle 5,-2\rangle$ and $\boldsymbol{v}=\langle 6,4\rangle$ find the component form each of the following vectors:
a) $\mathbf{u}-\boldsymbol{v}$
b) $5 \mathbf{u}$
c) $3 \mathbf{u}+(-2) \mathbf{v}$

DEFINITION --- Unit Vectors and the standard Unit Vectors

A vector \boldsymbol{u} with length 1 is called a \qquad
\qquad . to create a unit vector \boldsymbol{u} in the direction of \boldsymbol{v} simply divide vector \boldsymbol{v} by its magnitude: $\quad \mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{1}}{|\mathbf{v}|} \mathbf{v}$
The two unit vectors $\boldsymbol{i}=\langle 1,0\rangle$ and $\boldsymbol{j}=\langle 0,1\rangle$ are the standard unit vectors and can be used to write a vector as a linear combination of $\boldsymbol{i} \& \boldsymbol{j}$.

Ex5) Find a unit vector in the direction of $\boldsymbol{v}=\langle-3,2\rangle$, and verify that it has a length equal to 1 . Then write the answer in both component form and as a linear combination of the standard unit vectors.
$|\boldsymbol{v}|=$ \qquad
The component form of the vector \mathbf{u} a unit vector in the direction of \mathbf{v} is \qquad
u written as a linear combination of the standard unit vectors $\boldsymbol{i} \& \boldsymbol{j}$ is \qquad

DEFINITION --- Direction Angle

To precisely specify the direction of a vector state its direction angle θ (made by the vector and the positive x-axis)

Using trigonometry, we can see the horizontal component of a vector \boldsymbol{v} is $(|\boldsymbol{v}| \cos \theta)$ and the vertical component
is $(|\boldsymbol{v}| \sin \theta)$, thus: $\quad \boldsymbol{v}=(|\boldsymbol{v}| \cos \theta) \boldsymbol{i}+(|\boldsymbol{v}| \sin \theta) \boldsymbol{j}=\langle | \boldsymbol{v}|\cos \theta,|\boldsymbol{v}| \sin \theta\rangle$

Ex6) Find the components of vector \boldsymbol{v} with direction angle $\theta=115^{\circ}$ and magnitude of 6 .

Ex7) Find the magnitude \& direction angle of each vector:
a) $\boldsymbol{u}=\langle 3,2\rangle$
b) $\boldsymbol{v}=\langle-2,-5\rangle$

