H Math 2
Trigonometry Review
Find the missing side lengths. Leave your answers as radicals in simplest form.

2)
$4=y \underbrace{45^{\circ}-4 \sqrt{2}}_{x=4}=x \sqrt{2}$

4)

6)

7)

9) $\underbrace{\frac{10 \sqrt{3}}{3} \cdot \sqrt{3}}_{n}=\frac{10 \cdot 7}{36}=10]$

10)

$$
\frac{4=2 \sqrt{6}=2 \sqrt{6}}{45^{\circ}} \begin{aligned}
& \frac{4 \sqrt{3}}{\sqrt{2}}=\frac{x \sqrt{2}}{\sqrt{2}} \\
& \frac{4 \sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4 \sqrt{6}}{2}=2 \sqrt{6}
\end{aligned}
$$

$$
\begin{array}{ll}
30^{\circ} & \text { short leg }=x \\
60^{\circ} & \text { longleg }=x \sqrt{3}
\end{array}
$$

11)

12)

13)

14)

Find the missing side. Round to the nearest tenth.
17)

$\cos 61^{\circ}=\frac{x}{18}$
$18 \cos 61^{\circ}=x$ $x \approx 8.7$
18)

19)

20)

Find the measure of the indicated angle to the nearest degree.

21)

$\sin x=\frac{27}{31}$
$x=\sin ^{-1}\left(\frac{27}{31}\right)$
$x \approx 60.6^{\circ}$
22)

${ }^{23)}$

$$
\begin{aligned}
\tan x & =\frac{23}{15} \\
x & =\tan ^{-1}\left(\frac{23}{15}\right) \\
x & =56.9^{\circ}
\end{aligned}
$$

24)

$\cos x=\frac{10}{20}$
$x=30^{\circ}$
25) Mrs. Smith is at the top of a 150 -foot cliff and spots two sailboats. She notices that the angle of depression to one sailboat is 22° and to the other it is 29°. How far apart are the two sailboats?

$$
\begin{array}{rl}
\tan 29^{\circ}=\frac{150}{y} & \tan 22^{\circ}=\frac{150}{d} \\
y & =\frac{150}{\tan 29^{\circ}} \\
y \approx 270.607 & d=\frac{150}{\tan 22^{\circ}} \\
x \approx 100.7 \mathrm{ft.apart} &
\end{array}
$$

26) A 96 foot tree casts a shadow that is 120 feet long. What is the angle of elevation of the sun?

$$
\begin{aligned}
\tan \theta & =\frac{96}{120} \\
\theta & =\tan ^{-1}\left(\frac{96}{120}\right) \\
\theta & \approx 38.7^{\circ}
\end{aligned}
$$

27) A man is lying on the beach, flying a kite. He holds the end of the kite string at ground level and estimates the angle of elevation of the kite to be 50°. If the string is 450 feet long, how high is the kite above the ground?

$$
\begin{aligned}
& \sin 50^{\circ}=\frac{h}{450} \\
& 450 \sin 50^{\circ}=h \\
& h \approx 344.7 \mathrm{ft} .
\end{aligned}
$$

28) The altitude of an equilateral triangle is 5 cm . What is the length of a side of the triangle?

$$
\begin{aligned}
& \frac{5}{\sqrt{3}} \\
&=\frac{x \sqrt{3}}{\sqrt{3}} \\
& x= \frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{3}}{3} \mathrm{~cm}
\end{aligned}
$$

29) An office worker on the fourteenth floor of a building sight a friend on the street. The angle of depression is 35°, and the fourteenth floor is 135 ft in the air. How far is the friend from the building?

$$
\begin{aligned}
\tan 35^{\circ} & =\frac{135}{x} \\
x \tan 35^{\circ} & =135 \\
x & =\frac{135}{\tan 35^{\circ}} \approx 192.8 \mathrm{ft.}
\end{aligned}
$$

30) The angle of elevation to the top of the Empire State Building in New York is found to be 11° from the ground at a distance of 1 mile from the base of the building. Using this information, find the height of the Empire State Building in feet.

$$
\tan 11^{\circ}=\frac{n}{5280}
$$

$5280 \tan 11^{\circ}=h$

$$
h \approx 1026.3 \mathrm{ft} .
$$

(31) Orlando and Ryan are taking measurements related to the installation of a TV tower. Orlando measures a 62° angle of elevation to the top of the 950 ft TV tower. Find the angle of elevation for Ryan, standing 80 ft farther from the tower than Orlando.

$$
\begin{aligned}
\tan 62^{\circ} & =\frac{950}{x} \\
x & =\frac{950}{\tan 62^{\circ}} \\
x & \approx 505.12396
\end{aligned}
$$

$$
\tan \theta=\frac{950}{585.12396}
$$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{950}{585.12396}\right) \\
\theta & \approx 58.4^{\circ}
\end{aligned}
$$

32) The angle of depression from the top of a 320 foot office building to the top of a 200 foot office building is 55°. How far apart are the two buildings?

33) An airplane is flying at an elevation of 5150 ft , directly above a straight highway. Two motorists are driving cars on the highway on opposite sides of the plane, and the angle of depression to one car is 35° and to the other is 52°. How far apart are the cars?

