\qquad

Draw the resultant vector with the given conditions.

$$
M=(-4,6) \quad C=(2,-7) \quad H=(0,6) \quad u=\langle-3,-1\rangle v=\langle 2,-8\rangle \quad w=4 i+8 j
$$

1) $\overrightarrow{M C}$

2) $u-v$

3) $\overrightarrow{H C}+w$

Determine the unit vector for the following vectors.
4) $v=\langle-5,8\rangle$
5) $\overleftrightarrow{H M}$ where $H=(2,-2)$ and $M=(6,1)$
6) $w=6 i-3 j$

Using the information provided, determine if the vectors are equal.
$v=3 j$
$\boldsymbol{w}=5 i$
$P=(-1,4)$
$Q=(6,2)$
$R=(-3,1)$
$S=(2,4)$
7) $\boldsymbol{v}+\boldsymbol{w}$ and $\overrightarrow{R S}$
8) $\boldsymbol{u}=\langle-7,2\rangle$ and $\overrightarrow{P Q}$

Determine each resultant using the following information:

$$
\boldsymbol{u}=\langle 2,5\rangle v=\langle-1,3\rangle \quad \boldsymbol{w}=\langle 9,-6\rangle
$$

9) $u+v$
10) $\|w\|$
11) $u-3 w$
12) $(v-u) \cdot w$
13) Write the graphed vector in $a i+b j$ form and determine its magnitude.

14) Determine $u \cdot v$ if $u=\langle 3,-4\rangle$ and $v=\langle 6,2\rangle$.
15) Determine $v \cdot u$ if $u=\langle-1,4\rangle$ and $v=\langle 8,2\rangle$.
16) Determine the angle between the vectors if $u=\langle-7,9\rangle$ and $v=\langle 4,-5\rangle$
17) Determine the angle between the vectors if $u=\langle 6,0\rangle$ and $v=\langle 0,-3\rangle$

Write the angle in standard form
18) Bearing 123°
19) $N 48^{\circ} \mathrm{W}$
20) $\mathrm{S} 14^{\circ} \mathrm{W}$
21) $S 85^{\circ} E$

Write each vector given its magnitude and direction in component $(a i+b j)$ form.
22) speed $=39 \mathrm{~m} / \mathrm{s}$ at 73° from the horizontal
23) speed $=39 \mathrm{~m} / \mathrm{s}$ at $\mathrm{N} 12^{\circ} \mathrm{E}$

